gpt4 book ai didi

D&C 的 C 实现比矩阵乘法的 Naive 解决方案更快?

转载 作者:太空狗 更新时间:2023-10-29 15:58:24 25 4
gpt4 key购买 nike

分而治之 (D&C) 解决方案和矩阵乘法的朴素解决方案都是使用 C 编程语言“就地”实现的。所以根本没有动态内存分配。

正如我们对这两种解决方案所了解的那样,它们实际上具有相同的时间复杂度,即 O(n^3)。现在它们共享相同的空间复杂度,因为它们都是就地实现的。那怎么会有一个比另一个快这么多呢?

使用clock_gettime获取时间。

在核心 i7 笔记本电脑的 Windows 7 上使用 Cygwin,D&C 解决方案的运行速度惊人地快于 Naive 解决方案(已删除冗余日志):

Edited:

"algo0" indicates Naive solution, while "algo1" indicates D&C solution.

"len" indicates the width & height of the matrix. And the matrix is NxN matrix.

"00:00:00:000:003:421" means: "hour:minute:second:millisec:microsec:nanosec".

[alg0]time cost[0, len=00000002]: 00:00:00:000:003:421 (malloc_cnt=0)
[alg1]time cost[0, len=00000002]: 00:00:00:000:000:855 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[1, len=00000004]: 00:00:00:000:001:711 (malloc_cnt=0)
[alg1]time cost[1, len=00000004]: 00:00:00:000:001:711 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[2, len=00000008]: 00:00:00:000:009:408 (malloc_cnt=0)
[alg1]time cost[2, len=00000008]: 00:00:00:000:008:553 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[3, len=00000016]: 00:00:00:000:070:134 (malloc_cnt=0)
[alg1]time cost[3, len=00000016]: 00:00:00:000:065:858 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[4, len=00000032]: 00:00:00:000:564:066 (malloc_cnt=0)
[alg1]time cost[4, len=00000032]: 00:00:00:000:520:873 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[5, len=00000064]: 00:00:00:004:667:337 (malloc_cnt=0)
[alg1]time cost[5, len=00000064]: 00:00:00:004:340:188 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[6, len=00000128]: 00:00:00:009:662:680 (malloc_cnt=0)
[alg1]time cost[6, len=00000128]: 00:00:00:008:139:403 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[7, len=00000256]: 00:00:00:080:031:116 (malloc_cnt=0)
[alg1]time cost[7, len=00000256]: 00:00:00:065:395:329 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[8, len=00000512]: 00:00:00:836:392:576 (malloc_cnt=0)
[alg1]time cost[8, len=00000512]: 00:00:00:533:799:924 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[9, len=00001024]: 00:00:09:942:086:780 (malloc_cnt=0)
[alg1]time cost[9, len=00001024]: 00:00:04:307:021:362 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[10, len=00002048]: 00:02:53:413:046:992 (malloc_cnt=0)
[alg1]time cost[10, len=00002048]: 00:00:35:588:289:832 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[11, len=00004096]: 00:25:46:154:930:041 (malloc_cnt=0)
[alg1]time cost[11, len=00004096]: 00:04:38:196:205:661 (malloc_cnt=0)

即使在只有一个 ARM 内核的 Raspberry Pi 上,结果也是相似的(也删除了冗余数据):

[alg0]time cost[0, len=00000002]: 00:00:00:000:005:999 (malloc_cnt=0)
[alg1]time cost[0, len=00000002]: 00:00:00:000:051:997 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[1, len=00000004]: 00:00:00:000:004:999 (malloc_cnt=0)
[alg1]time cost[1, len=00000004]: 00:00:00:000:008:000 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[2, len=00000008]: 00:00:00:000:014:999 (malloc_cnt=0)
[alg1]time cost[2, len=00000008]: 00:00:00:000:023:999 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[3, len=00000016]: 00:00:00:000:077:996 (malloc_cnt=0)
[alg1]time cost[3, len=00000016]: 00:00:00:000:157:991 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[4, len=00000032]: 00:00:00:000:559:972 (malloc_cnt=0)
[alg1]time cost[4, len=00000032]: 00:00:00:001:248:936 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[5, len=00000064]: 00:00:00:005:862:700 (malloc_cnt=0)
[alg1]time cost[5, len=00000064]: 00:00:00:010:739:450 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[6, len=00000128]: 00:00:00:169:060:336 (malloc_cnt=0)
[alg1]time cost[6, len=00000128]: 00:00:00:090:290:373 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[7, len=00000256]: 00:00:03:207:909:599 (malloc_cnt=0)
[alg1]time cost[7, len=00000256]: 00:00:00:771:870:443 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[8, len=00000512]: 00:00:35:725:494:551 (malloc_cnt=0)
[alg1]time cost[8, len=00000512]: 00:00:08:139:712:988 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[9, len=00001024]: 00:06:29:762:101:314 (malloc_cnt=0)
[alg1]time cost[9, len=00001024]: 00:01:50:964:568:907 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[10, len=00002048]: 00:52:03:950:717:474 (malloc_cnt=0)
[alg1]time cost[10, len=00002048]: 00:14:19:222:020:444 (malloc_cnt=0)

我的第一个猜测是,这一定是 GCC 做了一些优化。但具体如何呢?

以下是 Naive 解决方案和 D&C 解决方案的代码。天真的解决方案:

void ClassicalMulti(int const * const mat1,
int const * const mat2,
int * const matrix,
const int n) {
if (!mat1 || !mat2 || n<=0) {
printf("ClassicalMulti: Invalid Input\n");
return;
}

int cnt, row, col;

for (row=0;row<n;++row) {
for (col=0;col<n;++col) {
for (cnt=0;cnt<n;++cnt) {
matrix[row*n+col] += mat1[row*n+cnt] * mat2[cnt*n+col];
}
}
}
}

分而治之的解决方案:

void DCMulti(int const * const mat1,
int const * const mat2,
int * const matrix,
const int p1,
const int p2,
const int pn,
const int n) {
if (!mat1 || !mat2 || !matrix || n<2 || p1<0 || p2 <0 || pn<2) {
printf("DCMulti: Invalid Input\n");
return;
}

if (pn == 2) {
int pos = (p1/n)*n + p2%n;
matrix[pos] += mat1[p1]*mat2[p2] + mat1[p1+1]*mat2[p2+n];
matrix[pos+1] += mat1[p1]*mat2[p2+1] + mat1[p1+1]*mat2[p2+1+n];
matrix[pos+n] += mat1[p1+n]*mat2[p2] + mat1[p1+1+n]*mat2[p2+n];
matrix[pos+1+n] += mat1[p1+n]*mat2[p2+1] + mat1[p1+1+n]*mat2[p2+1+n];
} else {
int a = p1;
int b = p1 + pn/2;
int c = p1 + pn*n/2;
int d = p1 + pn*(n+1)/2;
int e = p2;
int f = p2 + pn/2;
int g = p2 + pn*n/2;
int h = p2 + pn*(n+1)/2;
DCMulti(mat1, mat2, matrix, a, e, pn/2, n); // a*e
DCMulti(mat1, mat2, matrix, b, g, pn/2, n); // b*g
DCMulti(mat1, mat2, matrix, a, f, pn/2, n); // a*f
DCMulti(mat1, mat2, matrix, b, h, pn/2, n); // b*h
DCMulti(mat1, mat2, matrix, c, e, pn/2, n); // c*e
DCMulti(mat1, mat2, matrix, d, g, pn/2, n); // d*g
DCMulti(mat1, mat2, matrix, c, f, pn/2, n); // c*f
DCMulti(mat1, mat2, matrix, d, h, pn/2, n); // d*h
}
}

最佳答案

这两种方法的区别仅在于内存访问模式。即缓存位置;对于大型矩阵,尤其是行竞争相同的缓存行并导致缓存未命中的惩罚越来越大。最后,D&C 策略得到了返回,尽管全局更好的方法是将问题划分为 8x8 block ——一种称为 loop tiling 的技术。 . (毫不奇怪,矩阵乘法在维基百科文章中作为典型示例呈现......)

关于D&C 的 C 实现比矩阵乘法的 Naive 解决方案更快?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19963706/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com