gpt4 book ai didi

c - 使用位字段在新的二进制文件中写入自定义的 n 位数据

转载 作者:太空狗 更新时间:2023-10-29 15:56:31 26 4
gpt4 key购买 nike

我已经阅读了多个关于位域的类似主题,但我对它的理解还不够,所以我无法使用它。这是我的问题。我有这个 struct R:

struct R{
unsigned int opcode: 6;
unsigned int rs: 5;
unsigned int rt: 5;
unsigned int rd: 5;
unsigned int shamt: 5;
unsigned int funct: 6;
};

我使用位字段来定义我的结构是 32 位数据。对于那些想知道的人来说,这个结构代表了一个R类型的MIPS指令。

我想要的是将该数据写入名为 result 的文件中,为此我使用了以下代码:

struct R test  = {32,0,11,21,19,0}

FILE *fp = fopen("./result", "rb");
fwrite(&test,sizeof(test),1,result);

使用这段代码,如果我运行到控制台 xxd -b result,我希望看到这个:

00000000: 00100000 01011000 01110101 00000010

相反我得到

00000000: 00100000 10100000 01110011 00000001

我猜是fwrite的问题,但我不太明白。

这是为了家庭作业,所以我想到了一个替代方案:

  1. 创建一个数组 char sequence[32],其索引模拟 1 位。
  2. 有一个数组结构:
struct R{
char opcode[6];
char rs[5];
char rt[5];
char rd[5];
char shamt[5];
char funct[6];
};
  1. 通过连接所有数组构建我的二进制序列。
  2. 将每 8 行转换为十六进制 — 例如:00100000 给出 0x20
  3. 使用putc 写入我的文件。

我的选择很长,所以有没有办法直接做,或者有其他我应该知道的选择吗?

最佳答案

标准没有说明的内容

正如我在评论中指出的那样,

Bit-fields are an exasperating part of the C standard. Most aspects of their behaviour is implementation-defined. In particular, the mapping of different fields within a unit is implementation-defined, so whether opcode field occupies the most significant 6 bits or the least significant 6 bits is implementation defined.

参见 C11 §6.7.2.1 Structure and union specifiers , 特别是 ¶10继续。

C 标准没有规定位域的布局;它只是说实现必须记录它所做的事情。如果你发现当 opcode首先列出,它进入最低有效位,然后就这样;这就是你的编译器所做的。如果你想要它在最高有效位,你可能需要将它移动到结构的另一端(并且也需要颠倒其他字段的顺序)。它完全依赖于编译器——尽管编译器可能会符合平台 ABI。请参阅关于 Implementation defined behaviour: Structures, unions, enumerations, and bit-fields 的 GCC 文档, 例如。 GCC 在某些地方引用(并遵从)平台 ABI .您可以通过 Google 找到 ABI 信息——您找到的内容不一定非常可读,但信息就在那里。

一些代码来分析你的结构

这是一些基于您的结构的代码(以及一些二进制数字格式化代码):

#include <stdio.h>
#include <assert.h>

static
void format_binary8v(unsigned char x, int n, char buffer[static 9])
{
assert(n > 0 && n <= 8);
int start = 1 << (n - 1);
for (int b = start; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}

static
void format_binary32(unsigned int x, char buffer[static 33])
{
for (unsigned b = 2147483648; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}

struct R
{
unsigned int opcode : 6;
unsigned int rs : 5;
unsigned int rt : 5;
unsigned int rd : 5;
unsigned int shamt : 5;
unsigned int funct : 6;
};

static void dump_R(const char *tag, struct R r)
{
union X
{
struct R r;
unsigned int i;
};

printf("%s:\n", tag);
union X x = { .r = r };
char buffer[33];
format_binary32(x.i, buffer);
printf("Binary: %s\n", buffer);
format_binary8v(x.r.opcode, 6, buffer);
printf(" - opcode: %s\n", buffer);
format_binary8v(x.r.rs, 5, buffer);
printf(" - rs: %s\n", buffer);
format_binary8v(x.r.rt, 5, buffer);
printf(" - rt: %s\n", buffer);
format_binary8v(x.r.rd, 5, buffer);
printf(" - rd: %s\n", buffer);
format_binary8v(x.r.shamt, 5, buffer);
printf(" - shamt: %s\n", buffer);
format_binary8v(x.r.funct, 6, buffer);
printf(" - funct: %s\n", buffer);
}

int main(void)
{
char filename[] = "filename.bin";
FILE *fp = fopen(filename, "w+b");
if (fp == NULL)
{
fprintf(stderr, "failed to open file '%s' for reading and writing\n", filename);
return 1;
}
//struct R test = {32, 0, 11, 21, 19, 0};
struct R test = { 32, 7, 11, 21, 19, 3 };

fwrite(&test, sizeof(test), 1, fp);

dump_R("test - after write", test);

rewind(fp);
fread(&test, sizeof(test), 1, fp);
dump_R("test - after read", test);

fclose(fp);
return 0;
}

在运行 macOS 10.14.5 Mojave 和 GCC 9.1.0 的 MacBook Pro 上运行时,我得到:

test - after write:
Binary: 00001110011101010101100111100000
- opcode: 100000
- rs: 00111
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000011
test - after read:
Binary: 00001110011101010101100111100000
- opcode: 100000
- rs: 00111
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000011

原始二进制输出文件:

$ xxd -b filename.bin
00000000: 11100000 01011001 01110101 00001110 .Yu.
$

我的解释是,在我的机器上,opcode 的数据bit-field在存储单元的最低6位,数据为funct bit-field 在最高 6 位,其他元素在中间。查看 32 位值时,这一点很明显。一路xxd -b拆分它需要更多解释:

  • 第一个字节是最低有效字节 - Intel 架构。
  • 它包含 opcode 的所有 6 位最低有效位;它包含 rs 的两个最低有效位也是最高有效位。
  • 第二个字节包含 rs 的三个最高有效位作为其最低有效位,以及来自 rt 的所有 5 位作为其最重要的位。
  • 第三个字节包含 rd 的所有 5 位在其最低有效位和 shamt 的 3 个最低有效位中在其最高有效位。
  • 第四个也是最重要的字节包含 shamt 的 2 个最重要位在其最低有效位,以及所有 6 位 funct在其最高有效位。

这一切都有点令人兴奋!

当我恢复您对 test 的值时结构 ( struct R test = {32, 0, 11, 21, 19, 0}; ),我得到:

test - after write:
Binary: 00000010011101010101100000100000
- opcode: 100000
- rs: 00000
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000000
test - after read:
Binary: 00000010011101010101100000100000
- opcode: 100000
- rs: 00000
- rt: 01011
- rd: 10101
- shamt: 10011
- funct: 000000

00000000: 00100000 01011000 01110101 00000010                     Xu.

您的硬件和/或编译器与我的不同;它可能有不同的位域布局规则。

请注意,此代码假设 unsigned 未经测试或 unsigned int是一个 32 位的量。如果您使用的系统不适用,则需要修改代码以使用类似 uint32_t 的类型。和 uint8_t等,如 <stdint.h> 中所见(以及在 <inttypes.h> 中找到的格式说明符)。

精简代码

与原始代码相比,此代码以各种方式组织得更好。

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct R
{
unsigned int opcode : 6;
unsigned int rs : 5;
unsigned int rt : 5;
unsigned int rd : 5;
unsigned int shamt : 5;
unsigned int funct : 6;
};

static void test_r(const char *tag, struct R r, FILE *fp);
static void run_xxd(const char *file);

int main(void)
{
char filename[] = "filename.bin";
FILE *fp = fopen(filename, "w+b");
if (fp == NULL)
{
fprintf(stderr, "failed to open file '%s' for reading and writing\n", filename);
return 1;
}

struct R r[] =
{
{ 32, 0, 11, 21, 19, 0 },
{ 32, 7, 11, 21, 19, 3 },
{ 6, 21, 10, 14, 10, 8 },
};
enum { NUM_R = sizeof(r) / sizeof(r[0]) };

for (int i = 0; i < NUM_R; i++)
{
char name[16];
snprintf(name, sizeof(name), "r%d", i+1);
test_r(name, r[i], fp);
}

fclose(fp);

run_xxd(filename);

return 0;
}

static void run_one_xxd(const char *command, const char *filename)
{
char cmd[256];
snprintf(cmd, sizeof(cmd), "%s %s", command, filename);
printf("\nCommand: %s\n", cmd);
fflush(stdout);
system(cmd);
putchar('\n');
}

static void run_xxd(const char *filename)
{
run_one_xxd("xxd -c 4 -b ", filename);
run_one_xxd("xxd -c 4 -g 1 -u", filename);
}

static void format_binary8v(unsigned char x, int n, char buffer[static 9]);
static void format_binary32(unsigned x, char buffer[static 33]);
static void dump_bitfield(int nbits, unsigned value, const char *name);
static void dump_bytes(const char *tag, struct R r);
static void dump_R(const char *tag, struct R r);

static void test_r(const char *tag, struct R r, FILE *fp)
{
char buffer[32];
long offset = sizeof(struct R);
putchar('\n');
fwrite(&r, sizeof(r), 1, fp);
snprintf(buffer, sizeof(buffer), "%s - after write", tag);
dump_R(buffer, r);
fseek(fp, -offset, SEEK_CUR);
struct R s;
fread(&s, sizeof(s), 1, fp);
fseek(fp, 0, SEEK_CUR); // Ready for reading or writing!
snprintf(buffer, sizeof(buffer), "%s - after read", tag);
dump_R(buffer, s);
/* Safe regardless of whether struct R uses all bits in its storage unit */
assert(r.opcode == s.opcode);
assert(r.rs == s.rs );
assert(r.rs == s.rs );
assert(r.rs == s.rs );
assert(r.shamt == s.shamt );
assert(r.funct == s.funct );
/* Only safe because struct R uses all bits of its storage unit */
assert(memcmp(&r, &s, sizeof(struct R)) == 0);
}

static void dump_R(const char *tag, struct R r)
{
printf("%s:\n", tag);
dump_bytes("Binary", r);
dump_bitfield(6, r.opcode, "opcode");
dump_bitfield(5, r.rs, "rs");
dump_bitfield(5, r.rt, "rt");
dump_bitfield(5, r.rd, "rd");
dump_bitfield(5, r.shamt, "shamt");
dump_bitfield(6, r.funct, "funct");
}

static void dump_bytes(const char *tag, struct R r)
{
union X
{
struct R r;
unsigned i;
};
union X x = { .r = r };
char buffer[33];
printf("%s: 0x%.8X\n", tag, x.i);
format_binary32(x.i, buffer);
//printf("%s: MSB %s LSB\n", tag, buffer);
printf("%s: MSB", tag);
for (int i = 0; i < 4; i++)
printf(" %.8s", &buffer[8 * i]);
puts(" LSB (big-endian)");
printf("%s: LSB", tag);
for (int i = 0; i < 4; i++)
printf(" %.8s", &buffer[8 * (3 - i)]);
puts(" MSB (little-endian)");
}

static void dump_bitfield(int nbits, unsigned value, const char *name)
{
assert(nbits > 0 && nbits <= 32);
char vbuffer[33];
char nbuffer[8];
snprintf(nbuffer, sizeof(nbuffer), "%s:", name);
format_binary8v(value, nbits, vbuffer);
printf(" - %-7s %6s (%u)\n", nbuffer, vbuffer, value);
}

static
void format_binary8v(unsigned char x, int n, char buffer[static 9])
{
assert(n > 0 && n <= 8);
int start = 1 << (n - 1);
for (int b = start; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}

static
void format_binary32(unsigned x, char buffer[static 33])
{
for (unsigned b = 2147483648; b != 0; b /= 2)
{
*buffer++ = ((b & x) != 0) ? '1' : '0';
x &= ~b;
}
*buffer = '\0';
}

它产生输出:

r1 - after write:
Binary: 0x02755820
Binary: MSB 00000010 01110101 01011000 00100000 LSB (big-endian)
Binary: LSB 00100000 01011000 01110101 00000010 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00000 (0)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000000 (0)
r1 - after read:
Binary: 0x02755820
Binary: MSB 00000010 01110101 01011000 00100000 LSB (big-endian)
Binary: LSB 00100000 01011000 01110101 00000010 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00000 (0)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000000 (0)

r2 - after write:
Binary: 0x0E7559E0
Binary: MSB 00001110 01110101 01011001 11100000 LSB (big-endian)
Binary: LSB 11100000 01011001 01110101 00001110 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00111 (7)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000011 (3)
r2 - after read:
Binary: 0x0E7559E0
Binary: MSB 00001110 01110101 01011001 11100000 LSB (big-endian)
Binary: LSB 11100000 01011001 01110101 00001110 MSB (little-endian)
- opcode: 100000 (32)
- rs: 00111 (7)
- rt: 01011 (11)
- rd: 10101 (21)
- shamt: 10011 (19)
- funct: 000011 (3)

r3 - after write:
Binary: 0x214E5546
Binary: MSB 00100001 01001110 01010101 01000110 LSB (big-endian)
Binary: LSB 01000110 01010101 01001110 00100001 MSB (little-endian)
- opcode: 000110 (6)
- rs: 10101 (21)
- rt: 01010 (10)
- rd: 01110 (14)
- shamt: 01010 (10)
- funct: 001000 (8)
r3 - after read:
Binary: 0x214E5546
Binary: MSB 00100001 01001110 01010101 01000110 LSB (big-endian)
Binary: LSB 01000110 01010101 01001110 00100001 MSB (little-endian)
- opcode: 000110 (6)
- rs: 10101 (21)
- rt: 01010 (10)
- rd: 01110 (14)
- shamt: 01010 (10)
- funct: 001000 (8)

Command: xxd -c 4 -b filename.bin
00000000: 00100000 01011000 01110101 00000010 Xu.
00000004: 11100000 01011001 01110101 00001110 .Yu.
00000008: 01000110 01010101 01001110 00100001 FUN!

Command: xxd -c 4 -g 1 -u filename.bin
00000000: 20 58 75 02 Xu.
00000004: E0 59 75 0E .Yu.
00000008: 46 55 4E 21 FUN!

关于c - 使用位字段在新的二进制文件中写入自定义的 n 位数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56621360/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com