- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
在这里我尝试使用一些伪代码 self 解释 CUDA 启动参数模型(或执行配置模型),但我不知道是否有一些大错误,所以希望有人帮助审查它,并给我一些建议。感谢先进。
这里是:
/*
normally, we write kernel function like this.
note, __global__ means this function will be called from host codes,
and executed on device. and a __global__ function could only return void.
if there's any parameter passed into __global__ function, it should be stored
in shared memory on device. so, kernel function is so different from the *normal*
C/C++ functions. if I was the CUDA authore, I should make the kernel function more
different from a normal C function.
*/
__global__ void
kernel(float *arr_on_device, int n) {
int idx = blockIdx.x * blockDIm.x + threadIdx.x;
if (idx < n) {
arr_on_device[idx] = arr_on_device[idx] * arr_on_device[idx];
}
}
/*
after this definition, we could call this kernel function in our normal C/C++ codes !!
do you feel something wired ? un-consistant ?
normally, when I write C codes, I will think a lot about the execution process down to
the metal in my mind, and this one...it's like some fragile codes. break the sequential
thinking process in my mind.
in order to make things normal, I found a way to explain: I expand the *__global__ * function
to some pseudo codes:
*/
#define __foreach(var, start, end) for (var = start, var < end; ++var)
__device__ int
__indexing() {
const int blockId = blockIdx.x * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
return
blockId * (blockDim.x * blockDim.y * blockDim.z) +
threadIdx.z * (blockDim.x * blockDim.y) +
threadIdx.x;
}
global_config =:
{
/*
global configuration.
note the default values are all 1, so in the kernel codes,
we could just ignore those dimensions.
*/
gridDim.x = gridDim.y = gridDim.z = 1;
blockDim.x = blockDim.y = blockDim.z = 1;
};
kernel =:
{
/*
I thought CUDA did some bad evil-detail-covering things here.
it's said that CUDA C is an extension of C, but in my mind,
CUDA C is more like C++, and the *<<<>>>* part is too tricky.
for example:
kernel<<<10, 32>>>(); means kernel will execute in 10 blocks each have 32 threads.
dim3 dimG(10, 1, 1);
dim3 dimB(32, 1, 1);
kernel<<<dimG, dimB>>>(); this is exactly the same thing with above.
it's not C style, and C++ style ? at first, I thought this could be done by
C++'s constructor stuff, but I checked structure *dim3*, there's no proper
constructor for this. this just brroke the semantics of both C and C++. I thought
force user to use *kernel<<<dim3, dim3>>>* would be better. So I'd like to keep
this rule in my future codes.
*/
gridDim = dimG;
blockDim = dimB;
__foreach(blockIdx.z, 0, gridDim.z)
__foreach(blockIdx.y, 0, gridDim.y)
__foreach(blockIdx.x, 0, gridDim.x)
__foreach(threadIdx.z, 0, blockDim.z)
__foreach(threadIdx.y, 0, blockDim.y)
__foreach(threadIdx.x, 0, blockDim.x)
{
const int idx = __indexing();
if (idx < n) {
arr_on_device[idx] = arr_on_device[idx] * arr_on_device[idx];
}
}
};
/*
so, for me, gridDim & blockDim is like some boundaries.
e.g. gridDim.x is the upper bound of blockIdx.x, this is not that obvious for people like me.
*/
/* the declaration of dim3 from vector_types.h of CUDA/include */
struct __device_builtin__ dim3
{
unsigned int x, y, z;
#if defined(__cplusplus)
__host__ __device__ dim3(unsigned int vx = 1, unsigned int vy = 1, unsigned int vz = 1) : x(vx), y(vy), z(vz) {}
__host__ __device__ dim3(uint3 v) : x(v.x), y(v.y), z(v.z) {}
__host__ __device__ operator uint3(void) { uint3 t; t.x = x; t.y = y; t.z = z; return t; }
#endif /* __cplusplus */
};
typedef __device_builtin__ struct dim3 dim3;
最佳答案
CUDA 驱动程序 API
CUDA 驱动程序 API v4.0 及更高版本使用以下函数来控制内核启动:
cuFuncSetCacheConfig
cuFuncSetSharedMemConfig
cuLaunchKernel
在 v4.0 中引入 cuLaunchKernel 之前使用了以下 CUDA Driver API 函数。
cuFuncSetBlockShape()
cuFuncSetSharedSize()
cuParamSet{Size,i,fv}()
cuLaunch
cuLaunchGrid
关于这些函数的更多信息可以在 cuda.h 中找到。
CUresult CUDAAPI cuLaunchKernel(CUfunction f,
unsigned int gridDimX,
unsigned int gridDimY,
unsigned int gridDimZ,
unsigned int blockDimX,
unsigned int blockDimY,
unsigned int blockDimZ,
unsigned int sharedMemBytes,
CUstream hStream,
void **kernelParams,
void **extra);
cuLaunchKernel 将整个启动配置作为参数。
参见 NVIDIA Driver API[执行控制] 1了解更多详情。
CUDA 内核发布
cuLaunchKernel 将1.验证启动参数2.更改共享内存配置3.更改本地内存分配4. 将流同步 token 推送到命令缓冲区,以确保流中的两个命令不重叠4.将启动参数推送到命令缓冲区5.将启动命令推送到命令缓冲区6. 将命令缓冲区提交给设备(在 wddm 驱动程序上,此步骤可能会延迟)7. 在wddm上,内核驱动程序将对设备内存中所需的所有内存进行分页
GPU 将1.验证命令2. 将命令发送到计算工作分配器3. 将启动配置和线程 block 分发给 SM
当所有线程 block 都完成后,工作分配器将刷新缓存以遵循 CUDA 内存模型,并将内核标记为已完成,以便流中的下一个项目可以向前推进。
调度线程 block 的顺序因架构而异。
计算能力 1.x 设备将内核参数存储在共享内存中。计算能力 2.0-3.5 设备将 kenrel 参数存储在常量内存中。
CUDA 运行时 API
CUDA 运行时是一个 C++ 软件库,是在 CUDA Driver API 之上构建工具链。 CUDA 运行时使用以下函数来控制内核启动:
cuda配置调用cudaFuncSetCacheConfigcudaFuncSetSharedMemConfigcuda启动cudaSetup参数
参见 NVIDIA Runtime API[执行控制] 2
<<<>>> CUDA 语言扩展是用于启动内核的最常用方法。
在编译过程中,nvcc 将为使用 <<<>>> 调用的每个内核函数创建一个新的 CPU stub 函数,并将用对 stub 函数的调用替换 <<<>>>。
例如
__global__ void kernel(float* buf, int j)
{
// ...
}
kernel<<<blocks,threads,0,myStream>>>(d_buf,j);
产生
void __device_stub__Z6kernelPfi(float *__par0, int __par1){__cudaSetupArgSimple(__par0, 0U);__cudaSetupArgSimple(__par1, 4U);__cudaLaunch(((char *)((void ( *)(float *, int))kernel)));}
您可以通过将 --keep 添加到您的 nvcc 命令行来检查生成的文件。
cudaLaunch 调用 cuLaunchKernel。
CUDA 动态并行
CUDA CDP 的工作方式类似于上述 CUDA Runtime API。
关于CUDA 内核启动参数解释对了吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19240658/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!