- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试实现 Regula-Falsi 算法来求解 2(x^3)-x-2
的方程但问题是变量 c
值保持不变并且没有改变,即使我的代码应该改变它。
#include<math.h>
#include<stdio.h>
float fonc(float x)
{
int result;
result=2*(pow(x,3))-x-2;
return result;
}
int main(void)
{
float eps=pow(10,-4);
int i=0;
float a,b,c;
a=1;
b=2;
do
{
c=((a*fonc(b))-(b*fonc(a)))/((fonc(b)-fonc(a)));
if(fonc(c)*fonc(a)<0)
{
b=c;
}
else
{
a=c;
}
i++;
printf("\n%f",c);
}
while(fabs(b-c)>eps);
printf("le nombre d'itération %d",i);
}
最佳答案
即使所有数据类型都是合适的,所呈现的算法会出现什么问题?
与二分法相比,纯正则 falsi 不会强制区间长度变为零。如果使用单调凸函数,则迭代将停滞在仅改变具有几何收敛的区间的一侧。任何足够平滑的函数最终都会在剩余的包围间隔内具有这些属性。
要正确捕获此行为,应在计算后立即将中点 c
与区间两端的 a
、b
进行比较。作为奖励,检查 c
处的值是否足够小,如果为真,则无论距离区间末端有多远,也中断迭代。
有许多简单的技巧可以强制间隔长度为零。复杂的技巧导致了布伦特的方法。简单的技巧之一是伊利诺斯变体。在这些变体中,中点被认为是凸和
c = |f(b)|/(|f(a)|+|f(b)|) * a + |f(a)|/(|f(a)|+|f(b)|) * b
因为f(a)
和f(b)
的符号相反,所以这和原来的公式是等价的。如果边 b
没有改变,它在这个凸和中的重要性通过减小函数值 f(b)
来增加,即将它乘以额外的权重因子。这会将中点 c
移向 b
,这将在非常少的步骤中找到将替换 b
的中点。
以下是伊利诺斯变体的 regula falsi(或假位置方法)的实现。该算法在 6 次迭代中找到函数值为 2.2e-6
且封闭区间长度为 6e-7
的解。
#include<math.h>
#include<stdio.h>
float fonc(float x)
{
return (2*x*x-1)*x-2;
}
int main(void)
{
float eps=1e-6;
int i=0;
float a=1, fa = fonc(a);
float b=2, fb = fonc(b);
printf("\na=%10.7f b=%10.7f fa=%10.7f fb=%10.7f\n------\n",a,b, fa,fb);
if(signbit(fb)==signbit(fa)) {
printf("Attention, les valeurs initiales de 'fonc' n'ont pas de signe opposeés!\n");
}
do
{
float c=(a*fb-b*fa)/(fb-fa), fc = fonc(c);
if( signbit(fc)!=signbit(fa) )
{
b=a; fb=fa;
}
else
{
fb *= 0.5;
}
a=c; fa=fc;
i++;
printf("\na=c=%10.7f b=%10.7f fa=fc=%10.7f fb=%10.7f",c,b, fc,fb);
if(fabs(fc)<eps) break;
}
while(fabs(b-a)>eps);
printf("\nle nombre d'itération %d\n",i);
return 0;
}
输出是
a= 1.0000000 b= 2.0000000 fa=-1.0000000 fb=12.0000000
------
a=c= 1.0769231 b= 2.0000000 fa=fc=-0.5789710 fb= 6.0000000
a=c= 1.1581569 b= 2.0000000 fa=fc=-0.0512219 fb= 3.0000000
a=c= 1.1722891 b= 1.1581569 fa=fc= 0.0497752 fb=-0.0512219
a=c= 1.1653242 b= 1.1722891 fa=fc=-0.0003491 fb= 0.0497752
a=c= 1.1653727 b= 1.1722891 fa=fc=-0.0000022 fb= 0.0248876
a=c= 1.1653733 b= 1.1653727 fa=fc= 0.0000020 fb=-0.0000022
le nombre d'itération 6
关于c - Regula-Falsi 算法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22273751/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!