gpt4 book ai didi

java - 如何使用 Goertzel 算法检测频率

转载 作者:太空狗 更新时间:2023-10-29 14:35:23 28 4
gpt4 key购买 nike

我真的很难弄明白这一点。本质上,我试图找出通过麦克风播放的频率。据我了解,我需要暴力破解 Goertzel 算法。所以基本上我只是使用 Goertzel 算法尝试每个频率,直到找到正确的频率。但是,我不明白我实际上是如何知道 Goertzel 算法何时找到正确算法的。有人可以帮助我吗。

主 Activity .java

import androidx.appcompat.app.AppCompatActivity;

import android.media.AudioFormat;
import android.media.AudioRecord;
import android.media.MediaRecorder;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

private Button recordButton;
private TextView result;

private AudioRecord recording;
private static final int RECORDER_SAMPLERATE = 10000;
private static final int RECORDER_CHANNELS = AudioFormat.CHANNEL_IN_MONO;
private static final int RECORDER_AUDIO_ENCODING = AudioFormat.ENCODING_PCM_16BIT;
int bufferSize = AudioRecord.getMinBufferSize(RECORDER_SAMPLERATE, RECORDER_CHANNELS, RECORDER_AUDIO_ENCODING);
double[] dbSample = new double[bufferSize];
short[] sample = new short[bufferSize];
private int frequency = 0;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

recordButton = findViewById(R.id.recordButton);
result = findViewById(R.id.resultTextView);
recordButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
recording = new AudioRecord(MediaRecorder.AudioSource.DEFAULT, RECORDER_SAMPLERATE,
RECORDER_CHANNELS, RECORDER_AUDIO_ENCODING, bufferSize);
recording.startRecording();
int bufferReadResult = recording.read(sample, 0, bufferSize);


for (int j = 0; j < bufferSize && j < bufferReadResult; j++) {
dbSample[j] = (double) sample[j];
goertzel.processSample(dbSample[j]);
}

// Is this correct?
magnitude = Math.sqrt(goertzel.getMagnitudeSquared());
if(magnitude > maxMagnitude){
maxMagnitude = magnitude;
System.out.println("Freq is: " + Integer.toString(frequency));
}
goertzel.resetGoertzel();
frequency += 1;
}
});

}
}

Goertzel.java

public class Goertzel {
private float samplingRate;
private float targetFrequency;
private long n;
private double coeff, Q1, Q2;
private double sine, cosine;

public Goertzel(float samplingRate, float targetFrequency, long inN) {
this.samplingRate = samplingRate;
this.targetFrequency = targetFrequency;
n = inN;
}

public void resetGoertzel() {
Q1 = 0;
Q2 = 0;
}

public void initGoertzel() {
int k;
float floatN;
double omega;
floatN = (float) n;
k = (int) (0.5 + ((floatN * targetFrequency) / samplingRate));
omega = (2.0 * Math.PI * k) / floatN;
sine = Math.sin(omega);
cosine = Math.cos(omega);
coeff = 2.0 * cosine;
resetGoertzel();
}

public void processSample(double sample) {
double Q0;
Q0 = coeff * Q1 - Q2 + sample;
Q2 = Q1;
Q1 = Q0;
}

public double[] getRealImag(double[] parts) {
parts[0] = (Q1 - Q2 * cosine);
parts[1] = (Q2 * sine);
return parts;
}

public double getMagnitudeSquared() {
return (Q1 * Q1 + Q2 * Q2 - Q1 * Q2 * coeff);
}
}

最佳答案

您已经具体询问了暴力破解 Goertzel,所以这里有一个带注释的 JUnit 测试,说明了一种合理的方法:

public class TestGoertzel
{
private float[] freqs;
private Goertzel[] goertzels;
private static final int RECORDER_SAMPLERATE = 10000;
private static final int INPUT_SAMPLES = 256; //Roughly 26 ms of audio. This small array size was
//chosen b/c the number of frequency "bins" is typically related to the number of input samples,
//for engineering applications. If we only check 256 samples of audio, our "DFT" need only include
//128 output "bins". You can resize this to suit, but keep in mind that the processing time will
//increase exponentially.

@Test
public void test()
{
freqs = new float[INPUT_SAMPLES / 2]; //To prevent frequency-domain aliasing, we cannot test for 256 frequencies; only the first 128.

goertzels = new Goertzel[freqs.length];

for(int n = 0; n < freqs.length; ++n)
{
freqs[n] = n * RECORDER_SAMPLERATE / INPUT_SAMPLES; //Determine the frequency of a wave that can fit exactly n cycles in a block of audio INPUT_SAMPLES long.

//Create a Goertzel for each frequency "bin":
goertzels[n] = new Goertzel(RECORDER_SAMPLERATE, freqs[n], INPUT_SAMPLES);
goertzels[n].initGoertzel(); //Might as well create them all at the beginning, then "reset" them as necessary.
}

//This gives you an idea of the quality of output that can be had for a real signal from your
//microphone. The curve is not perfect, but shows the "smearing" characteristic of a wave
//whose frequency does not fall neatly into a single "bin":
testFrequency(1500.0f);

//Uncomment this to see a full unit test:
//for(float freq : freqs)
//{
// testFrequency(freq);
//}
}

private void testFrequency(float freqHz)
{
System.out.println(String.format("Testing input signal of frequency %5.1fHz", freqHz));
short[] audio = generateAudioWave(freqHz, (short) 1000);

short[] magnitudes = detectFrequencies(audio);

for(int i = 0; i < magnitudes.length; ++i)
{
System.out.println(String.format("%5.1fHz: %d", freqs[i], magnitudes[i]));
}
}

private short[] generateAudioWave(float freqHz, short peakAmp)
{
short[] ans = new short[INPUT_SAMPLES];

float w0 = (float) ((2 * Math.PI) * freqHz / RECORDER_SAMPLERATE);

for(int i = 0; i < ans.length; ++i)
{
ans[i] = (short) (Math.sin(w0 * i) * peakAmp);
}

return ans;
}


private short[] detectFrequencies(short[] audio)
{
short[] ans = new short[freqs.length];

for(int i = 0; i < goertzels.length; ++i)
{
Goertzel goertzel = goertzels[i];
goertzel.resetGoertzel();

for(short s : audio)
{
goertzel.processSample((double) s);
}

ans[i] = (short) (Math.sqrt(goertzel.getMagnitudeSquared()) * 2 / INPUT_SAMPLES);
}

return ans;
}
}

基本上,对于您读入的每 256 个音频样本,您都会获取该数组,并将其运行到涵盖您感兴趣的频率的 Goertzels 数组(每个 Goertzel 仅测量一个频率)。这给了你一个输出频谱。您可以根据自己的选择来解释该频谱;我把你的问题理解为“你如何找到输入音频中最响亮的分量的频率?”。在这种情况下,您将搜索 detectFrequencies() 的返回值以获得最大幅度。 freqs对应的成员就是你的答案。

事实是,您可能不想要 Goertzel,您想要一个 FFT ,由于 FFT 卓越的“计算效率”。由于 Goertzel 的速度稍慢(与 FFT 一样完整地覆盖频谱),您可能无法实时运行此答案。

顺便说一句,我认为在 Android 上不支持 10000 的采样率。

关于java - 如何使用 Goertzel 算法检测频率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57216412/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com