gpt4 book ai didi

c - pocketsphinx 无法有效识别通过麦克风录制的单词(命令)

转载 作者:太空狗 更新时间:2023-10-29 12:24:03 25 4
gpt4 key购买 nike

我在我的 debian 9 系统上编译了这个语音识别库 pocketsphinx 的示例 C 代码。

我在名为 goforward.raw 的文件中录制了示例音频,其中包含命令:“go forward”。

pockesphinx_continuous 程序都无法有效识别使用 Linux 上的 arecord 工具通过耳机录制的单词,给出的示例代码也无法识别。只是部分识别,即将“前进”命令识别为“前进”,这没关系,但其他命令的识别度非常低。如果你打招呼,它会变成你是谁。?

有趣的是,在从通过 pico2wave 工具创建的 wav 文件中提取单词时,使用文本到语音工具 pico2wave 创建的音频文件被非常有效地识别,准确率为 80%。

Here is the example pockesphinx code:

#include <pocketsphinx.h>


int
main(int argc, char *argv[])
{
ps_decoder_t *ps;
cmd_ln_t *config;
FILE *fh;
char const *hyp, *uttid;
int16 buf[512];
int rv;
int32 score;

config = cmd_ln_init(NULL, ps_args(), TRUE,
"-hmm", MODELDIR "/en-us/en-us",
"-lm", MODELDIR "/en-us/en-us.lm.bin",
"-dict", MODELDIR "/en-us/cmudict-en-us.dict",
NULL);
if (config == NULL) {
fprintf(stderr, "Failed to create config object, see log for details\n");
return -1;
}

ps = ps_init(config);
if (ps == NULL) {
fprintf(stderr, "Failed to create recognizer, see log for details\n");
return -1;
}

fh = fopen("goforward.raw", "rb");
if (fh == NULL) {
fprintf(stderr, "Unable to open input file goforward.raw\n");
return -1;
}

rv = ps_start_utt(ps);

while (!feof(fh)) {
size_t nsamp;
nsamp = fread(buf, 2, 512, fh);
rv = ps_process_raw(ps, buf, nsamp, FALSE, FALSE);
}

rv = ps_end_utt(ps);
hyp = ps_get_hyp(ps, &score);
printf("Recognized: %s\n", hyp);

fclose(fh);
ps_free(ps);
cmd_ln_free_r(config);

return 0;
}

and here is the pocketsphinx_continuous tool code provided by the official package from pocketsphinx:

/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 1999-2010 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/*
* continuous.c - Simple pocketsphinx command-line application to test
* both continuous listening/silence filtering from microphone
* and continuous file transcription.
*/

/*
* This is a simple example of pocketsphinx application that uses continuous listening
* with silence filtering to automatically segment a continuous stream of audio input
* into utterances that are then decoded.
*
* Remarks:
* - Each utterance is ended when a silence segment of at least 1 sec is recognized.
* - Single-threaded implementation for portability.
* - Uses audio library; can be replaced with an equivalent custom library.
*/

#include <stdio.h>
#include <string.h>
#include <assert.h>

#if !defined(_WIN32_WCE)
#include <signal.h>
#include <setjmp.h>
#endif
#if defined(WIN32) && !defined(GNUWINCE)
#include <time.h>
#else
#include <sys/types.h>
#include <sys/time.h>
#endif

#include <sphinxbase/err.h>
#include <sphinxbase/ad.h>

#include "pocketsphinx.h"

static const arg_t cont_args_def[] = {
POCKETSPHINX_OPTIONS,
/* Argument file. */
{"-argfile",
ARG_STRING,
NULL,
"Argument file giving extra arguments."},
{"-adcdev",
ARG_STRING,
NULL,
"Name of audio device to use for input."},
{"-infile",
ARG_STRING,
NULL,
"Audio file to transcribe."},
{"-time",
ARG_BOOLEAN,
"no",
"Print word times in file transcription."},
CMDLN_EMPTY_OPTION
};

static ps_decoder_t *ps;
static cmd_ln_t *config = cmd_ln_init(NULL, ps_args(), TRUE,
"-hmm", "/home/bsnayak/Trainguard_MT2/pocketsphinx/model9/hmm/trainguard/",
"-jsgf", "/home/bsnayak/Trainguard_MT2/pocketsphinx/model9/lm2/trainguardmt_adv_2.jsgf",
"-dict", "/home/bsnayak/Trainguard_MT2/pocketsphinx/model9/dict/trainguard.dic",
NULL);




static FILE *rawfd;

static void
print_word_times(int32 start)
{
ps_seg_t *iter = ps_seg_iter(ps, NULL);
while (iter != NULL) {
int32 sf, ef, pprob;
float conf;

ps_seg_frames(iter, &sf, &ef);
pprob = ps_seg_prob(iter, NULL, NULL, NULL);
conf = logmath_exp(ps_get_logmath(ps), pprob);
printf("%s %f %f %f\n", ps_seg_word(iter), (sf + start) / 100.0,
(ef + start) / 100.0, conf);
iter = ps_seg_next(iter);
}
}

/*
* Continuous recognition from a file
*/
static void
recognize_from_file()
{

int16 adbuf[4096];

const char *hyp;
const char *uttid;

int32 k;
uint8 cur_vad_state, vad_state;

char waveheader[44];
if ((rawfd = fopen(cmd_ln_str_r(config, "-infile"), "rb")) == NULL) {
E_FATAL_SYSTEM("Failed to open file '%s' for reading",
cmd_ln_str_r(config, "-infile"));
}

//skip wav header
fread(waveheader, 1, 44, rawfd);
cur_vad_state = 0;
ps_start_utt(ps, NULL);
while ((k = fread(adbuf, sizeof(int16), 4096, rawfd)) > 0) {
ps_process_raw(ps, adbuf, k, FALSE, FALSE);
vad_state = ps_get_vad_state(ps);
if (cur_vad_state && !vad_state) {
//speech->silence transition,
//time to end utterance and start new one
ps_end_utt(ps);
hyp = ps_get_hyp(ps, NULL, &uttid);
printf("%s: %s\n", uttid, hyp);
fflush(stdout);
ps_start_utt(ps, NULL);
}
cur_vad_state = vad_state;
}
ps_end_utt(ps);
hyp = ps_get_hyp(ps, NULL, &uttid);
printf("%s: %s\n", uttid, hyp);
fflush(stdout);

fclose(rawfd);
}

/* Sleep for specified msec */
static void
sleep_msec(int32 ms)
{
#if (defined(WIN32) && !defined(GNUWINCE)) || defined(_WIN32_WCE)
Sleep(ms);
#else
/* ------------------- Unix ------------------ */
struct timeval tmo;

tmo.tv_sec = 0;
tmo.tv_usec = ms * 1000;

select(0, NULL, NULL, NULL, &tmo);
#endif
}

/*
* Main utterance processing loop:
* for (;;) {
* start utterance and wait for speech to process
* decoding till end-of-utterance silence will be detected
* print utterance result;
* }
*/
static void
recognize_from_microphone()
{
ad_rec_t *ad;
int16 adbuf[4096];
uint8 cur_vad_state, vad_state;
int32 k;
char const *hyp;
char const *uttid;

if ((ad = ad_open_dev(cmd_ln_str_r(config, "-adcdev"),
(int) cmd_ln_float32_r(config,
"-samprate"))) == NULL)
E_FATAL("Failed to open audio device\n");
if (ad_start_rec(ad) < 0)
E_FATAL("Failed to start recording\n");

if (ps_start_utt(ps, NULL) < 0)
E_FATAL("Failed to start utterance\n");
cur_vad_state = 0;
/* Indicate listening for next utterance */
printf("READY....\n");
fflush(stdout);
fflush(stderr);
for (;;) {
if ((k = ad_read(ad, adbuf, 4096)) < 0)
E_FATAL("Failed to read audio\n");
sleep_msec(100);
ps_process_raw(ps, adbuf, k, FALSE, FALSE);
vad_state = ps_get_vad_state(ps);
if (vad_state && !cur_vad_state) {
//silence -> speech transition,
// let user know that he is heard
printf("Listening...\n");
fflush(stdout);
}
if (!vad_state && cur_vad_state) {
//speech -> silence transition,
//time to start new utterance
ps_end_utt(ps);
hyp = ps_get_hyp(ps, NULL, &uttid);
printf("%s: %s\n", uttid, hyp);
fflush(stdout);
//Exit if the first word spoken was GOODBYE
if (hyp && (strcmp(hyp, "good bye") == 0))
break;
if (ps_start_utt(ps, NULL) < 0)
E_FATAL("Failed to start utterance\n");
/* Indicate listening for next utterance */
printf("READY....\n");
fflush(stdout);
fflush(stderr);
}
cur_vad_state = vad_state;
}
ad_close(ad);
}

static jmp_buf jbuf;
static void
sighandler(int signo)
{
longjmp(jbuf, 1);
}

int
main(int argc, char *argv[])
{
char const *cfg;
/*
config = cmd_ln_parse_r(NULL, cont_args_def, argc, argv, TRUE);

///* Handle argument file as -argfile. */
/* if (config && (cfg = cmd_ln_str_r(config, "-argfile")) != NULL) {
config = cmd_ln_parse_file_r(config, cont_args_def, cfg, FALSE);
}
if (config == NULL)
return 1;

ps_default_search_args(config);
ps = ps_init(config);
if (ps == NULL)
return 1;
*/


if (config == NULL)
return 1;
ps = ps_init(config);
if (ps == NULL)
return 1;

E_INFO("%s COMPILED ON: %s, AT: %s\n\n", argv[0], __DATE__, __TIME__);

if (cmd_ln_str_r(config, "-infile") != NULL) {
recognize_from_file();
}
else {

/* Make sure we exit cleanly (needed for profiling among other things) */
/* Signals seem to be broken in arm-wince-pe. */
#if !defined(GNUWINCE) && !defined(_WIN32_WCE) && !defined(__SYMBIAN32__)
signal(SIGINT, &sighandler);
#endif

if (setjmp(jbuf) == 0) {
recognize_from_microphone();
}
}

ps_free(ps);
return 0;
}

/** Silvio Moioli: Windows CE/Mobile entry point added. */
#if defined(_WIN32_WCE)
#pragma comment(linker,"/entry:mainWCRTStartup")
#include <windows.h>

//Windows Mobile has the Unicode main only
int
wmain(int32 argc, wchar_t * wargv[])
{
char **argv;
size_t wlen;
size_t len;
int i;

argv = malloc(argc * sizeof(char *));
for (i = 0; i < argc; i++) {
wlen = lstrlenW(wargv[i]);
len = wcstombs(NULL, wargv[i], wlen);
argv[i] = malloc(len + 1);
wcstombs(argv[i], wargv[i], wlen);
}

//assuming ASCII parameters
return main(argc, argv);
}
#endif

我必须做什么才能让它与命令一起工作?即使有一点发音错误或口音差异,也能更有效地被识别。

最佳答案

这是为那些可能也有同样问题的人准备的,我回答我自己的问题的原因是关于 pocketsphinx 语音识别库的讨论很少,因此很难学习或使用,因为几乎没有社区活跃。官方网站没有提供易于理解的指南,我发现官方文档比只希望针对 pocketsphinx 库构建他/她的应用程序的开发人员的指南更受研究限制。

因此,如果您遇到过使用默认语言模型和词典成功识别语音的问题,但您想要效率和准确性,那么您必须创建自己的语言模型和词典,或者您可能想添加一些新的口音默认语言模型。

您所要做的就是创建一个示例语言语料库,其中包含文本文件中的单词或句子。然后使用 Sphinx lmtool 从中创建语言模型(lm 文件)和字典(dic 文件)。

下一步是不要在编译过程中提供默认的语言模型和字典,而应该提供这个新的 lm 和 dic 文件参数。

就是这样,它会以 100% 的准确度非常快速地识别单词。这是整个过程的链接:http://ghatage.com/tech/2012/12/13/Make-Pocketsphinx-recognize-new-words/

关于c - pocketsphinx 无法有效识别通过麦克风录制的单词(命令),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47510908/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com