gpt4 book ai didi

python - 使用 LinearSVC 进行特征选择

转载 作者:太空狗 更新时间:2023-10-30 03:03:39 29 4
gpt4 key购买 nike

当我尝试使用我的数据(来自 this example )运行以下代码时

X_new = LinearSVC(C=0.01, penalty="l1", dual=False).fit_transform(X, y)

我得到:

"Invalid threshold: all features are discarded"

我尝试指定我自己的阈值:

clf = LinearSVC(C=0.01, penalty="l1", dual=False)
clf.fit(X,y)
X_new = clf.transform(X, threshold=my_threshold)

但我要么得到:

  • X 大小相同的数组X_new,只要my_threshold 是以下之一:

    • '意思'
    • '中位数'
  • “无效阈值” 错误(例如,将标量值传递给阈值时)

我无法发布整个矩阵 X,但下面是一些数据统计信息:

> X.shape 
Out: (29,312)

> np.mean(X, axis=1)
Out:
array([-0.30517191, -0.1147345 , 0.03674294, -0.15926932, -0.05034101,
-0.06357734, -0.08781186, -0.12865185, 0.14172452, 0.33640029,
0.06778798, -0.00217696, 0.09097335, -0.17915627, 0.03701893,
-0.1361117 , 0.13132006, 0.14406628, -0.05081956, 0.20777349,
-0.06028931, 0.03541849, -0.07100492, 0.05740661, -0.38585413,
0.31837905, 0.14076042, 0.1182338 , -0.06903557])

> np.std(X, axis=1)
Out:
array([ 1.3267662 , 0.75313658, 0.81796146, 0.79814621, 0.59175161,
0.73149726, 0.8087903 , 0.59901198, 1.13414141, 1.02433752,
0.99884428, 1.11139231, 0.89254901, 1.92760784, 0.57181158,
1.01322265, 0.66705546, 0.70248779, 1.17107696, 0.88254386,
1.06930436, 0.91769016, 0.92915593, 0.84569395, 1.59371779,
0.71257806, 0.94307434, 0.95083782, 0.88996455])

y = array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
0, 0, 0, 0, 0, 0])

这一切都在 scikit-learn 0.14 中。

最佳答案

在尝试将其用作转换基础之前,您应该首先分析您的 SVM 模型是否训练良好。有可能您使用的太小的C 参数,这导致sklearn 训练一个简单的模型,从而导致删除所有特征。您可以通过对数据执行分类测试或至少打印找到的系数 (clf.coef_)

来检查它

最好运行网格搜索技术,在泛化属性方面获得最佳的C,然后将其用于转换。

关于python - 使用 LinearSVC 进行特征选择,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18213789/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com