- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试执行投资组合优化,以返回最大化我的效用函数的权重。我可以很好地完成这部分,包括权重总和为 1 的约束,并且权重也给我一个目标风险。我还包括了 [0 <= 权重 <= 1] 的界限。此代码如下所示:
def rebalance(PortValue, port_rets, risk_tgt):
#convert continuously compounded returns to simple returns
Rt = np.exp(port_rets) - 1
covar = Rt.cov()
def fitness(W):
port_Rt = np.dot(Rt, W)
port_rt = np.log(1 + port_Rt)
q95 = Series(port_rt).quantile(.05)
cVaR = (port_rt[port_rt < q95] * sqrt(20)).mean() * PortValue
mean_cVaR = (PortValue * (port_rt.mean() * 20)) / cVaR
return -1 * mean_cVaR
def solve_weights(W):
import scipy.optimize as opt
b_ = [(0.0, 1.0) for i in Rt.columns]
c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1},
{'type':'eq', 'fun': lambda W: sqrt(np.dot(W, np.dot(covar, W))\
* 252) - risk_tgt})
optimized = opt.minimize(fitness, W, method='SLSQP', constraints=c_, bounds=b_)
if not optimized.success:
raise BaseException(optimized.message)
return optimized.x # Return optimized weights
init_weights = Rt.ix[1].copy()
init_weights.ix[:] = np.ones(len(Rt.columns)) / len(Rt.columns)
return solve_weights(init_weights)
现在我可以深入研究这个问题,我将我的权重存储在 MultIndex pandas 系列中,这样每个 Assets 都是对应于 Assets 类别的 ETF。打印出同等权重的投资组合时,如下所示:
出[263]:equity CZA 0.045455 IWM 0.045455 SPY 0.045455intl_equity EWA 0.045455 EWO 0.045455 IEV 0.045455bond IEF 0.045455 SHY 0.045455 TLT 0.045455intl_bond BWX 0.045455 BWZ 0.045455 IGOV 0.045455commodity DBA 0.045455 DBB 0.045455 DBE 0.045455pe ARCC 0.045455 BX 0.045455 PSP 0.045455hf DXJ 0.045455 SRV 0.045455cash BIL 0.045455 GSY 0.045455Name: 2009-05-15 00:00:00, dtype: float64
how can I include an additional bounds requirement such that when I group this data together, the sum of the weight falls between the allocation ranges I have predetermined for that asset class?
So concretely, I want to include an additional boundary such that
init_weights.groupby(level=0, axis=0).sum()
出[264]:
equity 0.136364intl_equity 0.136364bond 0.136364intl_bond 0.136364commodity 0.136364pe 0.136364hf 0.090909cash 0.090909dtype: float64
is within these bounds
[(.08,.51), (.05,.21), (.05,.41), (.05,.41), (.2,.66), (0,.16), (0,.76), (0,.11)]
[更新]我想我会用一个我不太满意的笨拙的伪解决方案来展示我的进步。也就是说,因为它不是使用整个数据集来求解权重,而是按 Assets 类别来求解权重。另一个问题是它返回的是序列而不是权重,但我相信有人比我更合适,可以提供一些关于 groupby 函数的见解。
因此,通过对我的初始代码进行轻微调整,我得到了:
PortValue = 100000
model = DataFrame(np.array([.08,.12,.05,.05,.65,0,0,.05]), index= port_idx, columns = ['strategic'])
model['tactical'] = [(.08,.51), (.05,.21),(.05,.41),(.05,.41), (.2,.66), (0,.16), (0,.76), (0,.11)]
def fitness(W, Rt):
port_Rt = np.dot(Rt, W)
port_rt = np.log(1 + port_Rt)
q95 = Series(port_rt).quantile(.05)
cVaR = (port_rt[port_rt < q95] * sqrt(20)).mean() * PortValue
mean_cVaR = (PortValue * (port_rt.mean() * 20)) / cVaR
return -1 * mean_cVaR
def solve_weights(Rt, b_= None):
import scipy.optimize as opt
if b_ is None:
b_ = [(0.0, 1.0) for i in Rt.columns]
W = np.ones(len(Rt.columns))/len(Rt.columns)
c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1})
optimized = opt.minimize(fitness, W, args=[Rt], method='SLSQP', constraints=c_, bounds=b_)
if not optimized.success:
raise ValueError(optimized.message)
return optimized.x # Return optimized weights
下面的一行将返回稍微优化的系列
port = np.dot(port_rets.groupby(level=0, axis=1).agg(lambda x: np.dot(x,solve_weights(x))),\
solve_weights(port_rets.groupby(level=0, axis=1).agg(lambda x: np.dot(x,solve_weights(x))), \
list(model['tactical'].values)))
Series(port, name='portfolio').cumsum().plot()
[更新 2]
以下更改将返回受约束的权重,但仍然不是最优的,因为它在成分 Assets 类别上被分解和优化,因此当考虑目标风险的约束时,只有初始协方差矩阵的折叠版本可用
def solve_weights(Rt, b_ = None):
W = np.ones(len(Rt.columns)) / len(Rt.columns)
if b_ is None:
b_ = [(0.01, 1.0) for i in Rt.columns]
c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1})
else:
covar = Rt.cov()
c_ = ({'type':'eq', 'fun': lambda W: sum(W) - 1},
{'type':'eq', 'fun': lambda W: sqrt(np.dot(W, np.dot(covar, W)) * 252) - risk_tgt})
optimized = opt.minimize(fitness, W, args = [Rt], method='SLSQP', constraints=c_, bounds=b_)
if not optimized.success:
raise ValueError(optimized.message)
return optimized.x # Return optimized weights
class_cont = Rt.ix[0].copy()
class_cont.ix[:] = np.around(np.hstack(Rt.groupby(axis=1, level=0).apply(solve_weights).values),3)
scalars = class_cont.groupby(level=0).sum()
scalars.ix[:] = np.around(solve_weights((class_cont * port_rets).groupby(level=0, axis=1).sum(), list(model['tactical'].values)),3)
return class_cont.groupby(level=0).transform(lambda x: x * scalars[x.name])
最佳答案
不太确定我是否理解,但我认为您可以添加以下内容作为另一个约束:
def w_opt(W):
def filterer(x):
v = x.range.values
tp = v[0]
lower, upper = tp
return lower <= x[column_name].sum() <= upper
return not W.groupby(level=0, axis=0).filter(filterer).empty
c_ = {'type': 'eq', 'fun': w_opt} # add this to your other constraints
其中 x.range
是间隔 (tuple
) 重复 K[i]
次 其中 K
是特定级别出现的次数,i
是第 i
级别。 column_name
在您的案例中恰好是一个日期。
这表示限制权重,使第 i
组中的权重总和介于关联的 tuple
区间之间。
要将每个级别名称映射到一个间隔,请执行以下操作:
intervals = [(.08,.51), (.05,.21), (.05,.41), (.05,.41), (.2,.66), (0,.16), (0,.76), (0,.11)]
names = ['equity', 'intl_equity', 'bond', 'intl_bond', 'commodity', 'pe', 'hf', 'cash']
mapper = Series(zip(names, intervals))
fully_mapped = mapper[init_weights.get_level_values(0)]
original_dataset['range'] = fully_mapped.values
关于python - 使用分组边界的 SciPy 优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18218355/
比较代码: const char x = 'a'; std::cout > (0C310B0h) 00C3100B add esp,4 和 const i
您好,我正在使用 Matlab 优化求解器,但程序有问题。我收到此消息 fmincon 已停止,因为目标函数值小于目标函数限制的默认值,并且约束满足在约束容差的默认值范围内。我也收到以下消息。警告:矩
处理Visual Studio optimizations的问题为我节省了大量启动和使用它的时间 当我必须进行 J2EE 开发时,我很难回到 Eclipse。因此,我还想知道人们是否有任何提示或技巧可
情况如下:在我的 Excel 工作表中,有一列包含 1-name 形式的条目。考虑到数字也可以是两位数,我想删除这些数字。这本身不是问题,我让它工作了,只是性能太糟糕了。现在我的程序每个单元格输入大约
这样做有什么区别吗: $(".topHorzNavLink").click(function() { var theHoverContainer = $("#hoverContainer");
这个问题已经有答案了: 已关闭11 年前。 Possible Duplicate: What is the cost of '$(this)'? 我经常在一些开发人员代码中看到$(this)引用同一个
我刚刚结束了一个大型开发项目。我们的时间紧迫,因此很多优化被“推迟”。既然我们已经达到了最后期限,我们将回去尝试优化事情。 我的问题是:优化 jQuery 网站时您要寻找的最重要的东西是什么。或者,我
所以我一直在用 JavaScript 编写游戏(不是网络游戏,而是使用 JavaScript 恰好是脚本语言的游戏引擎)。不幸的是,游戏引擎的 JavaScript 引擎是 SpiderMonkey
这是我在正在构建的页面中使用的 SQL 查询。它目前运行大约 8 秒并返回 12000 条记录,这是正确的,但我想知道您是否可以就如何使其更快提出可能的建议? SELECT DISTINCT Adve
如何优化这个? SELECT e.attr_id, e.sku, a.value FROM product_attr AS e, product_attr_text AS a WHERE e.attr
我正在使用这样的结构来测试是否按下了所需的键: def eventFilter(self, tableView, event): if event.type() == QtCore.QEven
我正在使用 JavaScript 从给定的球员列表中计算出羽毛球 double 比赛的所有组合。每个玩家都与其他人组队。 EG。如果我有以下球员a、b、c、d。它们的组合可以是: a & b V c
我似乎无法弄清楚如何让这个 JS 工作。 scroll function 起作用但不能隐藏。还有没有办法用更少的代码行来做到这一点?我希望 .down-arrow 在 50px 之后 fade out
我的问题是关于用于生产的高级优化级联样式表 (CSS) 文件。 多么最新和最完整(准备在实时元素中使用)的 css 优化器/最小化器,它们不仅提供删除空格和换行符,还提供高级功能,如删除过多的属性、合
我读过这个: 浏览器检索在 中请求的所有资源开始呈现 之前的 HTML 部分.如果您将请求放在 中section 而不是,那么页面呈现和下载资源可以并行发生。您应该从 移动尽可能多的资源请求。
我正在处理一些现有的 C++ 代码,这些代码看起来写得不好,而且调用频率很高。我想知道我是否应该花时间更改它,或者编译器是否已经在优化问题。 我正在使用 Visual Studio 2008。 这是一
我正在尝试使用 OpenGL 渲染 3 个四边形(1 个背景图,2 个 Sprite )。我有以下代码: void GLRenderer::onDrawObjects(long p_dt) {
我确实有以下声明: isEnabled = false; if(foo(arg) && isEnabled) { .... } public boolean foo(arg) { some re
(一)深入浅出理解索引结构 实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(no
一、写在前面 css的优化方案,之前没有提及,所以接下来进行总结一下。 二、具体优化方案 2.1、加载性能 1、css压缩:将写好的css进行打包,可以减少很多的体积。 2、css单一样式:在需要下边
我是一名优秀的程序员,十分优秀!