- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我使用 sklearn Kmeans 对一个数据样本(400 k 个样本,维度 = 205、200 个簇)进行了聚类。
我想知道,对于每个集群,集群中心与集群最远样本之间的最大距离,以便了解集群的“大小”。这是我的代码:
import numpy as np
import scipy.spatial.distance as spd
diam = np.empty([200])
for i in range(200):
diam[i] = spd.cdist(seed[np.newaxis, i, 1:], data[data[:, 0]==i][:,1:]).max()
“种子”是聚类中心(200x206)。 “seed”的第一列包含簇内样本的数量(此处无关紧要)。
“数据”是样本 (400kx206)。数据的第一列包含簇号。
问题:这是使用循环完成的(不是那么“numpy”)。是否可以对其进行“矢量化”?
最佳答案
我们可以更智能地编制索引并节省约 4 倍的成本。
首先让我们构建一些正确形状的数据:
seed = np.random.randint(0, 100, (200,206))
data = np.random.randint(0, 100, (4e5,206))
seed[:, 0] = np.arange(200)
data[:, 0] = np.random.randint(0, 200, 4e5)
diam = np.empty(200)
原回答时间:
%%timeit
for i in range(200):
diam[i] = spd.cdist(seed[np.newaxis, i, 1:], data[data[:, 0]==i][:,1:]).max()
1 loops, best of 3: 1.35 s per loop
moarningsun的回答:
%%timeit
seed_repeated = seed[data[:,0]]
dist_to_center = np.sqrt(np.sum((data[:,1:]-seed_repeated[:,1:])**2, axis=1))
diam = np.zeros(len(seed))
np.maximum.at(diam, data[:,0], dist_to_center)
1 loops, best of 3: 1.33 s per loop
Divakar 的回答:
%%timeit
data_sorted = data[data[:, 0].argsort()]
seed_ext = np.repeat(seed,np.bincount(data_sorted[:,0]),axis=0)
dists = np.sqrt(((data_sorted[:,1:] - seed_ext[:,1:])**2).sum(1))
shift_idx = np.append(0,np.nonzero(np.diff(data_sorted[:,0]))[0]+1)
diam_out = np.maximum.reduceat(dists,shift_idx)
1 loops, best of 3: 1.65 s per loop
正如我们所看到的,除了更大的内存占用之外,矢量化解决方案并没有真正获得任何好处。为避免这种情况,我们需要返回到原始答案,这确实是做这些事情的正确方法,而是尝试减少索引量:
%%timeit
idx = data[:,0].argsort()
bins = np.bincount(data[:,0])
counter = 0
for i in range(200):
data_slice = idx[counter: counter+bins[i]]
diam[i] = spd.cdist(seed[None, i, 1:], data[data_slice, 1:]).max()
counter += bins[i]
1 loops, best of 3: 281 ms per loop
仔细检查答案:
np.allclose(diam, dam_out)
True
这是假设 python 循环不好的问题。他们通常是,但并非在所有情况下。
关于python - Numpy - 聚类 - 距离 - 向量化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33573991/
A是不同元素的序列,B是A的子序列,A-B是A中的所有元素,但不是B中的所有元素距离(A) = 总和|a(i)-a(i+1)|从 i=1 到 n-1找到一个子序列 B 使得 Dist(B)+Dist(
我想通过计算每对中所有(多维)点集之间距离的平均值来量化组相似性。 我可以很容易地手动为每对组手动完成此操作,如下所示: library(dplyr) library(tibble) library(
在 OpenXML 中用于指定大小或 X、Y 坐标的度量单位是什么? (介绍)。 将那些与像素匹配是否有意义,如果是这样,那些如何转换为像素? graphicFrame.Transform = new
我想知道是否有人可以帮助我替换过渡层中的值。 如果我尝试: transitionlayer[transitionlayer >= 0.14] = 0.14 : comparison (5) is
我在 firebase 中有一个列表,其中包括地理位置(经度和纬度),并且我想获得距给定坐标最近的 10 个位置。 我正在从 MySQL 过渡,在那里我将计算 SELECT 中的距离, 并在 ORDE
如何在 Python 中根据 2 个 GPS 坐标计算速度、距离和方向(度)?每个点都有纬度、经度和时间。 我在这篇文章中找到了半正矢距离计算: Calculate distance between
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 6 年前。 Improve this ques
我只想使用 matplotlib 标记两条曲线之间发生最大偏差的位置。请帮助我。 垂直距离适用于 Kolmogorov–Smirnov test import numpy as np %matplot
我有一个包含数万行重复项的文件。我想根据行号找到重复项之间的平均时间/距离。 例如:(其中第一列是行号) 1 string1 2 string2 3 string2 4 string1 5 strin
用公式speed=distance/time计算时间 但时间总是0我的输入是 distance=10 和 speed=5 我的输出必须 = 2 #include int main() { in
我正在使用 Levenshtein 算法来查找两个字符串之间的相似性。这是我正在制作的程序的一个非常重要的部分,因此它需要有效。问题是该算法没有发现以下示例相似: CONAIR AIRCON 算法给出
对于一个房地产网站,我需要实现一个允许搜索文本和距离的搜索机制。 当 lat 和 lon 记录在单独的列中时,在 MySQL 表上进行距离计算很容易,但房子往往有 LOT true/false 属性。
是否可以在触发前更改 UIPanGestureRecognizer 的距离?目前的实现似乎在触发前有 5-10 像素的距离余量,我想降低它如果可能的话。 原因是我将 UIPanGestureRecog
我试图找到两个网格之间的偏差。例如在 3d 空间中定义的两组点之间的差异,我计划使用一些 3d 可视化工具来可视化距离,例如QT3d 或一些基于开放式 gl 的库。 我有两组网格,基本上是两个 .ST
所以,我有这个函数可以快速返回两个字符串之间的 Levenshtein 距离: Function Levenshtein(ByVal string1 As String, ByVal string2
我正在尝试用字典创建一个光学字符识别系统。 事实上,我还没有实现字典=) 我听说有一些基于 Levenstein 距离的简单指标,这些指标考虑了不同符号之间的不同距离。例如。 'N' 和 'H' 彼此
我在PostGIS数据库(-4326)中使用经纬度/经度SRID。我想以一种有效的方式找到最接近给定点的点。我试图做一个 ORDER BY ST_Distance(point, ST_GeomF
我想从线串的一端开始提取沿线串已知距离处的点的坐标。 例如: library(sf) path % group_by(L1) %>% summarise(do_union =
我已经编写了这些用于聚类基于序列的数据的函数: library(TraMineR) library(cluster) clustering <- function(data){ data <- s
是否可以设置 UILabel 的行之间的距离,因为我有一个 UILabel 包含 3 行,并且换行模式是自动换行? 最佳答案 如果您指的是“前导”,它指的是类型行之间的间隙 - 您无法在 UILabe
我是一名优秀的程序员,十分优秀!