- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 SymPy 1.0 和 Python 2.7。我想计算前 100 个整数的总和:
这段代码运行成功
import sympy as sy
from sympy.tensor import IndexedBase, Idx
import numpy as np
x = sy.IndexedBase('x')
i = sy.symbols('i', cls=Idx)
s = sy.Sum(x[i], (i, 0, 100))
s_lambda = sy.lambdify(sy.DeferredVector('x'), s, 'numpy')
s_lambda(np.arange(101))
并按预期给出 5050
。但是,当我尝试对 Product
而不是 Sum
执行相同操作时:
import sympy as sy
from sympy.tensor import IndexedBase, Idx
import numpy as np
x = sy.IndexedBase('x')
i = sy.symbols('i', cls=Idx)
s = sy.Product(x[i], (i, 0, 100))
s_lambda = sy.lambdify(sy.DeferredVector('x'), s, 'numpy')
s_lambda(np.arange(101))
我收到一个NameError: global name 'Product' is not defined
我究竟做错了什么?是否有解决方法来获得我想要的东西?
编辑 1:如果我事先不知道 Product
的限制怎么办。比如说
import sympy as sy
from sympy.tensor import IndexedBase, Idx
import numpy as np
x = sy.IndexedBase('x')
i = sy.symbols('i', cls=Idx)
n = sy.symbols('n', integer=True, positive=True)
s = sy.Product(x[i], (i, 0, n))
s_lambda = sy.lambdify((sy.DeferredVector('x'), n) s.doit(), 'numpy')
s_lambda(np.arange(101), 5)
编辑 2:我正在尝试找到解决方法。 NameError: global name 'Product' is not defined
错误是因为这个:
lambdastr((sy.DeferredVector('x'), n), p)
这给出了:
lambda x,n: (Product(x[i], (i, 0, n)))
虽然对于 Sum
,我们得到了一个有效的 lambda 函数:
lambda x,n: ((builtins.sum(x[i] for i in range(0, n+1))))
此时问题围绕着 Product
函数的定义展开。根据手册,我可以通过 dict
注入(inject)我对函数的定义
def my_prod(a, b):
# my implementation
pass
my_fun = {"Product" : my_prod}
f = sy.lambdify((sy.DeferredVector('x'), n), p, modules=['numpy', my_fun])
f([1,2,3,4,5], 2)
问题是,当我尝试使用 lambdified 函数 f
时,list indices must be integers, not Symbol
出现错误。我想这是由于 i
是一个符号,而它应该是一个整数。我不明白为什么它在尝试调用 my_prod
之前没有传递实际的 integer
,因为它是针对 Sum
的情况。
最佳答案
Product
的限制是事先已知的您可以通过调用 .doit()
将 Product
展开为其组成部分来解决此问题:
In [104]: s = sy.Product(x[i], (i, 1, 10)); s
Out[104]: Product(x[i], (i, 1, 10))
In [105]: s.doit()
Out[105]: x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[8]*x[9]*x[10]
例如,
import sympy as sy
from sympy.tensor import IndexedBase, Idx
import numpy as np
x = sy.IndexedBase('x')
i = sy.symbols('i', cls=Idx)
s = sy.Product(x[i], (i, 1, 10))
s_lambda = sy.lambdify(sy.DeferredVector('x'), s.doit(), 'numpy')
print(s_lambda(np.arange(11)))
打印
3628800
但是,如果您将 .doit()
与 sy.Product(x[i], (i, 1, 100))
一起使用,那么您将得到一个算术溢出,因为 np.arange(101)
的 dtype int32
或 int64
(取决于您的操作系统)和产品 100!
In [109]: math.factorial(100)
Out[109]: 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
太大,无法存储在 int32
或 int64
数组值中。
In [118]: np.iinfo('int64').max
Out[118]: 9223372036854775807
In [119]: np.iinfo('int64').max < math.factorial(100)
Out[119]: True
因此,
s = sy.Product(x[i], (i, 1, 100))
s_lambda = sy.lambdify(sy.DeferredVector('x'), s.doit(), 'numpy')
print(s_lambda(np.arange(101)))
提出一个
RuntimeWarning: overflow encountered in long_scalars
并错误地打印出 0
。
如果将输入从 dtype int64
数组更改为 Python int
列表,则产品可以正确计算:
import sympy as sy
from sympy.tensor import IndexedBase, Idx
import numpy as np
x = sy.IndexedBase('x')
i = sy.symbols('i', cls=Idx)
s = sy.Product(x[i], (i, 1, 100))
s_lambda = sy.lambdify(sy.DeferredVector('x'), s.doit(), 'numpy')
print(s_lambda(np.arange(101).tolist()))
打印
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
Product
的限制不事先已知解决方法(AFAICS)变得更加复杂。如果您使用调试器跟踪代码路径在使用 Sum
时,您会发现 LambdaPrinter._print_Sum
被调用以将 Sum(x[i], (i, 0, n))
转换为表达式 builtins.sum(x[i] for
.
我在范围 (0, n+1))
如果我们将 _print_Product
方法添加到 NumPyPrinter
(LambdaPrinter
的子类),然后我们可以让 lambdify
成功地将 Product
转换为 NumPy 可以计算的表达式:
import sympy as sy
from sympy.tensor import IndexedBase, Idx
import numpy as np
import sympy.printing.lambdarepr as SPL
def _print_Product(self, expr):
loops = (
'for {i} in range({a}, {b}+1)'.format(
i=self._print(i),
a=self._print(a),
b=self._print(b))
for i, a, b in expr.limits)
return '(prod([{function} {loops}]))'.format(
function=self._print(expr.function),
loops=' '.join(loops))
SPL.NumPyPrinter._print_Product = _print_Product
x = sy.IndexedBase('x')
i = sy.symbols('i', cls=Idx)
n = sy.symbols('n', integer=True, positive=True)
s = sy.Product(x[i], (i, 1, n))
s_lambda = sy.lambdify((sy.DeferredVector('x'), n), s, 'numpy')
print(s_lambda(np.arange(101), 5))
打印
120
关于python - SymPy 不能 lambdify Product,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37846492/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!