gpt4 book ai didi

python - 具有周期性边界条件的 np.ndarray

转载 作者:太空狗 更新时间:2023-10-30 02:57:09 26 4
gpt4 key购买 nike

问题

施加np.ndarray周期性边界条件,如下所示

详情

  • 将 python np.ndarray 的索引包裹在 n 维度
  • 的边界周围
  • 这是形成 n 维环面的周期性边界条件
  • 回绕发生在返回值是标量(单个点)的情况下。
  • 切片将被视为正常并且不会被包装

下面给出一个例子和反例:

a = np.arange(27).reshape(3,3,3)
b = Periodic_Lattice(a) # A theoretical class

# example: returning a scalar that shouldn't be accessible
print b[3,3,3] == b[0,0,0] # returns a scalar so invokes wrapping condition
try: a[3,3,3] # the value is out of bounds in the original np.ndarray
except: print 'error'

# counter example: returning a slice
try: b[3,3] # this returns a slice and so shouldn't invoke the wrap
except: print 'error'

应该给出输出:

True
error
error

我预计我应该在 np.ndarray 中重载 __getitem____setitem__ 但是如何进行这个并不完全清楚并且有SO 上的许多实现在许多测试用例中都失败了。

最佳答案

换行函数

一个简单的函数可以用 mod 函数,% 在基本 python 中编写,并泛化为对给定的 n 维元组进行操作特定的形状。

def latticeWrapIdx(index, lattice_shape):
"""returns periodic lattice index
for a given iterable index

Required Inputs:
index :: iterable :: one integer for each axis
lattice_shape :: the shape of the lattice to index to
"""
if not hasattr(index, '__iter__'): return index # handle integer slices
if len(index) != len(lattice_shape): return index # must reference a scalar
if any(type(i) == slice for i in index): return index # slices not supported
if len(index) == len(lattice_shape): # periodic indexing of scalars
mod_index = tuple(( (i%s + s)%s for i,s in zip(index, lattice_shape)))
return mod_index
raise ValueError('Unexpected index: {}'.format(index))

测试如下:

arr = np.array([[ 11.,  12.,  13.,  14.],
[ 21., 22., 23., 24.],
[ 31., 32., 33., 34.],
[ 41., 42., 43., 44.]])
test_vals = [[(1,1), 22.], [(3,3), 44.], [( 4, 4), 11.], # [index, expected value]
[(3,4), 41.], [(4,3), 14.], [(10,10), 33.]]

passed = all([arr[latticeWrapIdx(idx, (4,4))] == act for idx, act in test_vals])
print "Iterating test values. Result: {}".format(passed)

并给出输出,

Iterating test values. Result: True

子类化 Numpy

包装函数可以合并到子类 np.ndarray 中,如 here 所述:

class Periodic_Lattice(np.ndarray):
"""Creates an n-dimensional ring that joins on boundaries w/ numpy

Required Inputs
array :: np.array :: n-dim numpy array to use wrap with

Only currently supports single point selections wrapped around the boundary
"""
def __new__(cls, input_array, lattice_spacing=None):
"""__new__ is called by numpy when and explicit constructor is used:
obj = MySubClass(params) otherwise we must rely on __array_finalize
"""
# Input array is an already formed ndarray instance
# We first cast to be our class type
obj = np.asarray(input_array).view(cls)

# add the new attribute to the created instance
obj.lattice_shape = input_array.shape
obj.lattice_dim = len(input_array.shape)
obj.lattice_spacing = lattice_spacing

# Finally, we must return the newly created object:
return obj

def __getitem__(self, index):
index = self.latticeWrapIdx(index)
return super(Periodic_Lattice, self).__getitem__(index)

def __setitem__(self, index, item):
index = self.latticeWrapIdx(index)
return super(Periodic_Lattice, self).__setitem__(index, item)

def __array_finalize__(self, obj):
""" ndarray.__new__ passes __array_finalize__ the new object,
of our own class (self) as well as the object from which the view has been taken (obj).
See
http://docs.scipy.org/doc/numpy/user/basics.subclassing.html#simple-example-adding-an-extra-attribute-to-ndarray
for more info
"""
# ``self`` is a new object resulting from
# ndarray.__new__(Periodic_Lattice, ...), therefore it only has
# attributes that the ndarray.__new__ constructor gave it -
# i.e. those of a standard ndarray.
#
# We could have got to the ndarray.__new__ call in 3 ways:
# From an explicit constructor - e.g. Periodic_Lattice():
# 1. obj is None
# (we're in the middle of the Periodic_Lattice.__new__
# constructor, and self.info will be set when we return to
# Periodic_Lattice.__new__)
if obj is None: return
# 2. From view casting - e.g arr.view(Periodic_Lattice):
# obj is arr
# (type(obj) can be Periodic_Lattice)
# 3. From new-from-template - e.g lattice[:3]
# type(obj) is Periodic_Lattice
#
# Note that it is here, rather than in the __new__ method,
# that we set the default value for 'spacing', because this
# method sees all creation of default objects - with the
# Periodic_Lattice.__new__ constructor, but also with
# arr.view(Periodic_Lattice).
#
# These are in effect the default values from these operations
self.lattice_shape = getattr(obj, 'lattice_shape', obj.shape)
self.lattice_dim = getattr(obj, 'lattice_dim', len(obj.shape))
self.lattice_spacing = getattr(obj, 'lattice_spacing', None)
pass

def latticeWrapIdx(self, index):
"""returns periodic lattice index
for a given iterable index

Required Inputs:
index :: iterable :: one integer for each axis

This is NOT compatible with slicing
"""
if not hasattr(index, '__iter__'): return index # handle integer slices
if len(index) != len(self.lattice_shape): return index # must reference a scalar
if any(type(i) == slice for i in index): return index # slices not supported
if len(index) == len(self.lattice_shape): # periodic indexing of scalars
mod_index = tuple(( (i%s + s)%s for i,s in zip(index, self.lattice_shape)))
return mod_index
raise ValueError('Unexpected index: {}'.format(index))

测试正确地演示了晶格重载,

arr = np.array([[ 11.,  12.,  13.,  14.],
[ 21., 22., 23., 24.],
[ 31., 32., 33., 34.],
[ 41., 42., 43., 44.]])
test_vals = [[(1,1), 22.], [(3,3), 44.], [( 4, 4), 11.], # [index, expected value]
[(3,4), 41.], [(4,3), 14.], [(10,10), 33.]]

periodic_arr = Periodic_Lattice(arr)
passed = (periodic_arr == arr).all()
passed *= all([periodic_arr[idx] == act for idx, act in test_vals])
print "Iterating test values. Result: {}".format(passed)

并给出输出,

Iterating test values. Result: True

最后,使用初始问题中提供的代码我们得到:

True
error
error

关于python - 具有周期性边界条件的 np.ndarray,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38066785/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com