gpt4 book ai didi

python - 使用 Python 对 NetCDF 文件进行循环纬度/经度裁剪

转载 作者:太空狗 更新时间:2023-10-30 02:56:11 24 4
gpt4 key购买 nike

我正在从事一个项目,该项目将原始二进制雷达数据从国家气象局 ftp 站点导入服务器。使用 Wea​​ther and Climate Toolkit 数据导出工具,我将数据转换为 netCDF 文件。以下是对 .nc 文件执行“ncdump -h”命令的结果:

netcdf last {
dimensions:
lat = 800 ;
lon = 1200 ;
time = 1 ;
variables:
double cref(time, lat, lon) ;
cref:long_name = "Level-III Composite Reflectivity (16 levels / 248 nm)" ;
cref:missing_value = -999. ;
cref:units = "dBZ" ;
double lat(lat) ;
lat:units = "degrees_north" ;
lat:spacing = "0.010995604400775773" ;
lat:datum = "NAD83 - NOAA Standard" ;
double lon(lon) ;
lon:units = "degrees_east" ;
lon:spacing = "0.010983926942902655" ;
lon:datum = "NAD83 - NOAA Standard" ;
int time(time) ;
time:units = "seconds since 1970-1-1" ;

// global attributes:
:title = "Level-III Composite Reflectivity (16 levels / 248 nm) 22:23:47 UTC 10/20/2016" ;
:Conventions = "CF-1.0" ;
:History = "Exported to NetCDF-3 CF-1.0 conventions by the NOAA Weather and Climate Toolkit (version 3.7.9) \n",
"Export Date: Thu Oct 20 16:11:07 EDT 2016" ;
:geographic_datum_ESRI_PRJ = "GEOGCS[\"GCS_North_American_1983\",DATUM[\"D_North_American_1983\",SPHEROID[\"GRS_1980\",6378137,298.257222101]],PRIMEM[\"Greenwich\",0],UNIT[\"Degree\",0.0174532925199433]]" ;
:geographic_datum_OGC_WKT = "GEOGCS[\"NAD83\", DATUM[\"NAD83\", SPHEROID[\"GRS_1980\", 6378137.0, 298.25722210100002],TOWGS84[0,0,0,0,0,0,0]], PRIMEM[\"Greenwich\", 0.0], UNIT[\"degree\",0.017453292519943295], AXIS[\"Longitude\",EAST], AXIS[\"Latitude\",NORTH]]" ;
}

我想找到 cref 变量的最大条目,我可以使用 python 中的 netCDF4 和 numpy 库很容易地做到这一点:

import netCDF4
import numpy

netcdf = netCDF4.Dataset("last.nc")
var = netcdf.variables['cref']
print(numpy.nanmax(var))
print(numpy.nanmin(var))

但是,我希望过滤 netCDF 文件,以便仅在给定纬度/经度的特定距离内找到最大值和最小值。换句话说,我希望围绕指定的纬度/经度“裁剪”一个指定半径的圆。我找到了 how to crop a square通过另一个 SO 线程,但无法弄清楚圆圈是如何工作的。

最佳答案

我会计算中心与每个纬度/经度对(二维网格)之间的距离,并使用它来构建一个可以应用于数据的 mask 。屏蔽后,您可以再次简单地使用 numpy 函数来计算统计数据,例如 max()

例如,使用 https://stackoverflow.com/a/4913653/3581217 中的 haversine() 函数,修改为矢量化版本,您可以直接将其应用于 numpy 数组:

import numpy as np
import matplotlib.pylab as pl

def haversine(lon1, lat1, lon2, lat2):
# convert decimal degrees to radians
lon1 = np.deg2rad(lon1)
lon2 = np.deg2rad(lon2)
lat1 = np.deg2rad(lat1)
lat2 = np.deg2rad(lat2)

# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371
return c * r

# Latitude / longitude grid
lat = np.linspace(50,54,16)
lon = np.linspace(6,9,12)

# Center coordinates
clat = 52
clon = 7

max_dist = 100 # max distance in km

# Calculate distance between center and all other lat/lon pairs
distance = haversine(lon[:,np.newaxis], lat, clon, clat)

# Mask distance array where distance > max_dist
distance_m = np.ma.masked_greater(distance, max_dist)

# Dummy data
data = np.random.random(size=[lon.size, lat.size])

# Test: set a value outside the max_dist circle to a large value:
data[0,0] = 10

# Mask the data array based on the distance mask
data_m = np.ma.masked_where(distance > max_dist, data)

pl.figure()
pl.subplot(221)
pl.title('distance (km)')
pl.pcolormesh(lon, lat, np.transpose(distance))
pl.colorbar()

pl.subplot(222)
pl.title('distance < max_dist (km)')
pl.pcolormesh(lon, lat, np.transpose(distance_m))
pl.colorbar()

pl.subplot(223)
pl.title('all data; max = {0:.1f}'.format(data.max()))
pl.pcolormesh(lon, lat, np.transpose(data))
pl.colorbar()

pl.subplot(224)
pl.title('masked data; max = {0:.1f}'.format(data_m.max()))
pl.pcolormesh(lon, lat, np.transpose(data_m))
pl.colorbar()

结果是:

enter image description here

关于python - 使用 Python 对 NetCDF 文件进行循环纬度/经度裁剪,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40177960/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com