- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试将批量规范添加到 Keras 中的 vgg 样式模型。当我添加 batch norm 层时,出现错误:
FailedPreconditionError: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
没有批处理层,脚本运行没有错误,只有当我添加 batchNormalization 层时它才会抛出错误。
model = Sequential()
model.add(ZeroPadding2D((1, 1), input_shape=(1, conf['image_shape'][0], conf['image_shape'][1]), dim_ordering=conf['dim_ordering']))
model.add(Convolution2D(conf['level_1_filters'], 3, 3, dim_ordering=conf['dim_ordering']))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(ZeroPadding2D((1, 1), dim_ordering=conf['dim_ordering']))
model.add(Convolution2D(conf['level_1_filters'], 3, 3, dim_ordering=conf['dim_ordering']))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), dim_ordering=conf['dim_ordering']))
model.add(ZeroPadding2D((1, 1), dim_ordering=conf['dim_ordering']))
model.add(Convolution2D(conf['level_2_filters'], 3, 3, dim_ordering=conf['dim_ordering']))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(ZeroPadding2D((1, 1), dim_ordering=conf['dim_ordering']))
model.add(Convolution2D(conf['level_2_filters'], 3, 3, dim_ordering=conf['dim_ordering']))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2), dim_ordering=conf['dim_ordering']))
model.add(Flatten())
model.add(Dense(conf['dense_layer_size']))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(conf['dropout_value']))
model.add(Dense(conf['dense_layer_size']))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(conf['dropout_value']))
model.add(Dense(2, activation='softmax'))
# sgd = SGD(lr=conf['learning_rate'], decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
这是在 Keras 中使用批归一化的正确语法吗?我按照这个 thread 中的例子.
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
Train patients: 699
Valid patients: 698
Create and compile model...
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:03:00.0
Total memory: 7.92GiB
Free memory: 7.07GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:03:00.0)
Number of train files: 123111
Number of valid files: 125469
Fit model...
Samples train: 5000, Samples valid: 5000
Epoch 1/40
W tensorflow/core/framework/op_kernel.cc:975] Failed precondition: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
W tensorflow/core/framework/op_kernel.cc:975] Failed precondition: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
W tensorflow/core/framework/op_kernel.cc:975] Failed precondition: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
W tensorflow/core/framework/op_kernel.cc:975] Failed precondition: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
W tensorflow/core/framework/op_kernel.cc:975] Failed precondition: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
W tensorflow/core/framework/op_kernel.cc:975] Failed precondition: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
Traceback (most recent call last):
File "keras-v2.py", line 197, in <module>
model = create_single_model()
File "keras-v2.py", line 173, in create_single_model
callbacks=callbacks)
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 882, in fit_generator
pickle_safe=pickle_safe)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1461, in fit_generator
class_weight=class_weight)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1239, in train_on_batch
outputs = self.train_function(ins)
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 1040, in __call__
updated = session.run(self.outputs + [self.updates_op], feed_dict=feed_dict)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 964, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1014, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1034, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
[[Node: Mean_3/_49 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_2152_Mean_3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'batchnormalization_1_running_mean/biased/read', defined at:
File "keras-v2.py", line 197, in <module>
model = create_single_model()
File "keras-v2.py", line 145, in create_single_model
model = get_custom_CNN()
File "keras-v2.py", line 111, in get_custom_CNN
model.add(BatchNormalization(axis=-1))
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 312, in add
output_tensor = layer(self.outputs[0])
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 514, in __call__
self.add_inbound_node(inbound_layers, node_indices, tensor_indices)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 572, in add_inbound_node
Node.create_node(self, inbound_layers, node_indices, tensor_indices)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 149, in create_node
output_tensors = to_list(outbound_layer.call(input_tensors[0], mask=input_masks[0]))
File "/usr/local/lib/python2.7/dist-packages/keras/layers/normalization.py", line 140, in call
self.updates = [K.moving_average_update(self.running_mean, mean, self.momentum),
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 329, in moving_average_update
variable, value, momentum)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/moving_averages.py", line 70, in assign_moving_average
update_delta = _zero_debias(variable, value, decay)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/moving_averages.py", line 177, in _zero_debias
trainable=False)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 1024, in get_variable
custom_getter=custom_getter)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 850, in get_variable
custom_getter=custom_getter)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 346, in get_variable
validate_shape=validate_shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 331, in _true_getter
caching_device=caching_device, validate_shape=validate_shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variable_scope.py", line 677, in _get_single_variable
expected_shape=shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variables.py", line 224, in __init__
expected_shape=expected_shape)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variables.py", line 370, in _init_from_args
self._snapshot = array_ops.identity(self._variable, name="read")
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 1424, in identity
result = _op_def_lib.apply_op("Identity", input=input, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 759, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2240, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1128, in __init__
self._traceback = _extract_stack()
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value batchnormalization_1_running_mean/biased
[[Node: batchnormalization_1_running_mean/biased/read = Identity[T=DT_FLOAT, _class=["loc:@batchnormalization_1_running_mean"], _device="/job:localhost/replica:0/task:0/gpu:0"](batchnormalization_1_running_mean/biased)]]
[[Node: Mean_3/_49 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_2152_Mean_3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Exception in thread Thread-1:
Traceback (most recent call last):
File "/usr/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/usr/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 433, in data_generator_task
generator_output = next(generator)
File "keras-v2.py", line 71, in batch_generator_train
image = load_and_normalize_dicom(f, conf['image_shape'][0], conf['image_shape'][1])
File "keras-v2.py", line 58, in load_and_normalize_dicom
dicom_img = cv2.resize(dicom_img, (x, y), interpolation=cv2.INTER_CUBIC)
AttributeError: 'NoneType' object has no attribute 'resize'
最佳答案
在适合之前尝试 keras.backend.get_session().run(tf.global_variables_initializer())
。有问题here
关于python - Keras BatchNormalization 未初始化值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41818654/
我找到了 this excellent question and answer它以 x/y(加上 center x/y 和 degrees/radians)开始并计算旋转- 到 x'/y'。这个计算很
全部: 我已经创建了一个 Windows 窗体和一个按钮。在另一个线程中,我试图更改按钮的文本,但它崩溃了;但是如果我尝试更改按钮的颜色,它肯定会成功。我认为如果您更改任何 Windows 窗体控件属
本网站的另一个问题已证实,C 中没有缩写的字面后缀,并且可以执行以下操作: short Number = (short)1; 但是转换它和不这样做有什么区别: short Number = 1; 您使
我有下表: ID (int) EMAIL (varchar(50)) CAMPAIGNID (int) isSubscribe (bit) isActionByUser (bit) 此表存储了用户对事
也就是说,无需触发Javascript事件即可改变的属性,如何保留我手动选中或取消选中的复选框的状态,然后复制到另一个地方? 运行下面的代码片段并选中或取消选中其中的一些,然后点击“复制”: $('#
我在网上找到的所有关于递增指针导致段错误的示例都涉及指针的取消引用 - 如果我只想递增它(例如在 for 循环的末尾)并且我不在乎它是否最终进入无效内存,因为我不会再使用它。例如,在这个程序中,每次迭
我有一个 Spring MVC REST 服务,它使用 XStream 将消息与 XML 相互转换。 有什么方法可以将请求和响应中的 xml(即正文)打印到普通的 log4j 记录器? 在 Contr
做我的任务有一个很大的挑战,那就是做相互依赖的任务我在这张照片中说的。假设我们有两个任务 A 和 B,执行子任务 A1、A2 和 B1、B2,假设任务 B 依赖于 A。 要理想地执行任务 B,您应该执
通过阅读该网站上的几个答案,我了解到 CoInitialize(Ex) should be called by the creator of a thread 。然后,在该线程中运行的任何代码都可以使
这个问题已经困扰我一段时间了。我以前从未真正使用过 ListViews,也没有使用过 FirebaseListAdapters。我想做的就是通过显示 id 和用户位置来启动列表的基础,但由于某种原因,
我很难解释这两个(看似简单)句子的含义: “受检异常由编译器在编译时检查” 这是什么意思?编译器检查是否捕获了所有已检查的异常(在代码中抛出)? “未经检查的异常在运行时检查,而不是编译时” 这句话中
我有一个包含排除子字符串的文本文件,我想迭代该文件以检查并返回不带排除子字符串的输入项。 这里我使用 python 2.4,因此下面的代码可以实现此目的,因为 with open 和 any 不起作用
Spring 的缓存框架能否了解请求上下文的身份验证状态,或者更容易推出自己的缓存解决方案? 最佳答案 尽管我发现这个用例 super 奇怪,但您可以为几乎任何与 SpEL 配合使用的内容设置缓存条件
我有以下函数模板: template HeldAs* duplicate(MostDerived *original, HeldAs *held) { // error checking omi
如果我的应用程序具有设备管理员/设备所有者权限(未获得 root 权限),我如何才能从我的应用程序中终止(或阻止启动)另一个应用程序? 最佳答案 设备所有者可以阻止应用程序: DevicePolicy
非常简单的问题,但我似乎无法让它正常工作。 我有一个组件,其中有一些 XSLT(用于导航)。它通过 XSLT TBB 使用 XSLT Mediator 发布。 发布后
我正在将一个对象拖动到一个可拖放的对象内,该对象也是可拖动的。放置对象后,它会嵌套在可放置对象内。同样,如果我将对象拖到可放置的外部,它就不再嵌套。 但是,如果我经常拖入和拖出可放置对象,则可拖动对象
我正在尝试为按钮和弹出窗口等多个指令实现“取消选择”功能。也就是说,我希望当用户单击不属于指令模板一部分的元素时触发我的函数。目前,我正在使用以下 JQuery 代码: $('body').click
我从 this question 得到了下面的代码,该脚本用于在 Google tasks 上更改 iframe[src="about:blank"] 内的 CSS使用 Chrome 扩展 Tempe
我有一些 @Mock 对象,但没有指定在该对象上调用方法的返回值。该方法返回 int (不是 Integer)。我很惊讶地发现 Mockito 没有抛出 NPE 并返回 0。这是预期的行为吗? 例如:
我是一名优秀的程序员,十分优秀!