gpt4 book ai didi

python - Python生成统计表并导出到Excel

转载 作者:太空狗 更新时间:2023-10-30 02:51:40 25 4
gpt4 key购买 nike

我想用 Python 生成用于出版物的高质量统计表。

在 Stata 中,可以使用 community-contributed 命令系列estout:

sysuse auto, clear

regress mpg weight
estimates store A

regress mpg weight price
estimates store B

regress mpg weight price length
estimates store C

regress mpg weight price length displacement
estimates store D

esttab A B C D, se r2 nonumber mtitle("Model 1" "Model 2" "Model 3" "Model 4")

----------------------------------------------------------------------------
Model 1 Model 2 Model 3 Model 4
----------------------------------------------------------------------------
weight -0.00601*** -0.00582*** -0.00304 -0.00354
(0.000518) (0.000618) (0.00177) (0.00212)

price -0.0000935 -0.000173 -0.000174
(0.000163) (0.000168) (0.000169)

length -0.0966 -0.0947
(0.0577) (0.0582)

displacement 0.00433
(0.00983)

_cons 39.44*** 39.44*** 49.68*** 50.02***
(1.614) (1.622) (6.329) (6.410)
----------------------------------------------------------------------------
N 74 74 74 74
R-sq 0.652 0.653 0.666 0.667
----------------------------------------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

如何在 Python 中运行多元回归并将信息汇总到一些漂亮的表格中?

我也想将这些导出到 Excel 中。

最佳答案

您可以使用 statsmodels 中的 summary_col() 函数:

import pandas as pd        
import statsmodels.api as sm
from statsmodels.iolib.summary2 import summary_col

df = pd.read_stata('http://www.stata-press.com/data/r14/auto.dta')
df['cons'] = 1

Y = df['mpg']
X1 = df[['weight', 'cons']]
X2 = df[['weight', 'price', 'cons']]
X3 = df[['weight', 'price', 'length', 'cons']]
X4 = df[['weight', 'price', 'length', 'displacement', 'cons']]

reg1 = sm.OLS(Y, X1).fit()
reg2 = sm.OLS(Y, X2).fit()
reg3 = sm.OLS(Y, X3).fit()
reg4 = sm.OLS(Y, X4).fit()

results = summary_col([reg1, reg2, reg3, reg4],stars=True,float_format='%0.2f',
model_names=['Model\n(1)', 'Model\n(2)', 'Model\n(3)', 'Model\n(4)'],
info_dict={'N':lambda x: "{0:d}".format(int(x.nobs)),
'R2':lambda x: "{:.2f}".format(x.rsquared)})

上面的代码片段将产生以下内容:

print(results)

================================================
Model Model Model Model
(1) (2) (3) (4)
------------------------------------------------
cons 39.44*** 39.44*** 49.68*** 50.02***
(1.61) (1.62) (6.33) (6.41)
displacement 0.00
(0.01)
length -0.10* -0.09
(0.06) (0.06)
price -0.00 -0.00 -0.00
(0.00) (0.00) (0.00)
weight -0.01*** -0.01*** -0.00* -0.00*
(0.00) (0.00) (0.00) (0.00)
N 74 74 74 74
R2 0.65 0.65 0.67 0.67
================================================
Standard errors in parentheses.
* p<.1, ** p<.05, ***p<.01

然后您只需导出:

results_text = results.as_text()

import csv
resultFile = open("table.csv",'w')
resultFile.write(results_text)
resultFile.close()

关于python - Python生成统计表并导出到Excel,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54881902/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com