- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试绘制 ROC 曲线来评估隔离森林对乳腺癌数据集的准确性。我从混淆矩阵中计算出真阳性率 (TPR) 和假阳性率 (FPR)。但是,我不明白 TPR 和 FPR 是如何以矩阵形式出现的,而不是单个整数值。而且ROC曲线似乎只对矩阵形式的FPR和TPR有效(我也试过手动写计算FPR和TPR的代码)。
TPR 和 FPR 值总是以矩阵的形式存在吗?
无论哪种方式,我的 ROC 曲线都是一条直线。为什么会这样?
混淆矩阵:
from sklearn.metrics import confusion_matrix
cnf_matrix = confusion_matrix(y, y_pred_test1)
订单:
> [[ 5 25]
> [ 21 180]]
True Positive 和 False Positive:(另外,为什么这些值直接取自混淆矩阵?)
F_P = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)
F_N = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix)
T_P = np.diag(cnf_matrix)
T_N = cnf_matrix.sum() - (FP + FN + TP)
F_P = F_P.astype(float)
F_N = F_N.astype(float)
T_P = T_P.astype(float)
T_N = T_N.astype(float)
订单:
False Positive [21. 25.]
False Negative [25. 21.]
True Positive [ 5. 180.]
True Negative [180. 5.]
TPR 和 FPR:
tp_rate = TP/(TP+FN)
fp_rate = FP/(FP+TN)
订单:
TPR : [0.16666667 0.89552239]
FPR [0.10447761 0.83333333]
ROC 曲线:
from sklearn import metrics
import matplotlib.pyplot as plt
plt.plot(fp_rate,tp_rate)
plt.show()
订单:
最佳答案
confusion_matrix()
函数只为您提供正确/错误分类的点,但不提供有关模型对数据点错误分类时的置信度的信息。
此信息用于创建 ROC 曲线(用于衡量模型根据每个数据点对特定类别的可能性对其进行排名的能力)。
相反,使用 decision_function()
或 score_samples()
函数来计算模型对每个数据点是(或不是)异常的置信度。然后,使用 roc_curve()
获得绘制曲线本身所需的点。
这是乳腺癌数据集的示例。
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
from sklearn.ensemble import IsolationForest
clf = IsolationForest(behaviour='new', max_samples=100,
random_state=0, contamination='auto')
clf.fit(X)
y_pred = clf.score_samples(X)
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y,y_pred)
import matplotlib.pyplot as plt
plt.plot(fpr, tpr, 'k-', lw=2)
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.show()
关于python - Isolation Forest 的 ROC 曲线,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55106102/
我有一个包含 100 个样本的数据集,每个样本都有 195 个突变,具有相应的已知临床意义(“RealClass”)和根据某些预测工具的预测值(“PredictionValues”) 为了演示,这是一
从下面的代码中,看起来使用 keras 和 scikit 评估 roc 实际上有所不同。有人知道解释吗? import tensorflow as tf from keras.layers impor
我很难理解 multiclass.roc 参数应该是什么样子。这是我的数据快照: > head(testing.logist$cut.rank) [1] 3 3 3 3 1 3 Levels: 1 2
我已经使用 ROCR 包绘制了 2 类问题的 ROC 曲线。根据我的理解,至少对于较小的数据集,曲线应该看起来像阶跃变化图。我的输入实际上很小,但我得到的曲线基本上看起来是直线。是因为 PROC 适合
我正在尝试使用 rpart 在插入符号中最大限度地提高模型选择的灵敏度。为此,我尝试复制此处给出的方法(向下滚动到使用用户定义函数 FourStat 的示例)caret's github page #
我正在尝试使用插入符包生成随机森林模型,使用 ROC 曲线下的面积作为训练指标,但我收到以下警告: Warning message: In train.default(x = TrainData, y
我在 R 平台中使用 randomForest 包进行分类任务。 rf_object<-randomForest(data_matrix, label_factor, cutoff=c(k,1-k))
我正在构建两个不同的分类器来预测二进制结果。然后我想通过使用 ROC 曲线及其下面积 (AUC) 来比较两个模型的结果。 我将数据集分为训练集和测试集。在训练集上,我执行一种形式的交叉验证。从交叉验证
我最近在为我的项目使用 sklearn 时遇到困难。我想构建一个分类器并将我的数据分为六组。总样本量为 88 然后我将数据分成 train(66) 和 test(22)我完全按照 sklearn 文档
我正在进行不同的文本分类实验。现在我需要计算每个任务的 AUC-ROC。对于二进制分类,我已经使用以下代码使其工作: scaler = StandardScaler(with_mean=False)
我正在尝试应用 sklearn 的想法 ROC extension to multiclass到我的数据集。我的每类 ROC 曲线看起来都找到了一条直线,取消显示曲线波动的 sklearn 示例。 我
这是一个代表 library(caret) library(dplyr) set.seed(88, sample.kind = "Rounding") mtcars % mutate(am = a
我有以下概念问题,我无法理解。 以下是调查数据示例,其中我有一个时间列,指示某人需要多长时间才能回答某个问题。 现在,我感兴趣的是清洁量将如何根据此阈值发生变化,即如果我增加阈值会发生什么,如果我降低
如何为使用视频的对象检测应用绘制每个窗口的误报率与未命中率(或误报概率)和 ROC(接收器操作曲线)的图表?如何确定误报和命中的数量?一个例子是很有用。 最佳答案 它很简单。将所有真正 (H0) 值存
我正在尝试绘制随机森林分类的 ROC 曲线。绘图有效,但我认为我绘制了错误的数据,因为生成的绘图只有一个点(准确性)。 这是我使用的代码: set.seed(55) data.controls <
我有如下两个模型: library(mlbench) data(Sonar) library(caret) set.seed(998) my_data <- Sonar fitControl <-
我很难将 ROC 的示例命令转换为我的数据集。这是用于 pROC 包 这是使用数据(aSAH)的例子 roc(aSAH$outcome, aSAH$s100b) roc(outcome ~ s100b
我试图在多类 knn 模型和数据集上运行一些 ROC 分析 到目前为止,我有 kNN 模型的这段代码。它运作良好。X_train_new是一个包含 131 个数值变量(列)和 7210 个观测值的数据
是否可以仅通过查看其 ROC 曲线来了解分类器是否过度拟合?我看到如果它的 AUC 太高(例如 98%)可能会过度拟合,但这也可能意味着分类器非常好。有没有办法区分这两种情况? 最佳答案 简短的回答:
在运行逻辑回归后,我使用以下代码绘制 ROC 曲线。 fit1 <- glm(formula=GB160M3~Behvscore, data=eflscr,family="binomial", na.
我是一名优秀的程序员,十分优秀!