gpt4 book ai didi

Python内存表数据结构分析(dict、list、combo)

转载 作者:太空狗 更新时间:2023-10-30 02:49:57 28 4
gpt4 key购买 nike

我正在尝试模拟一些我使用 SQL 而不是使用所有 Python 的代码。在这里得到一些帮助 CSV to Python Dictionary with all column names?

我现在可以将压缩的 csv 文件读入字典,不过只有一行,最后一行。 (如何获取行样本或整个数据文件?)

我希望有一个内存驻留表,当我完成后,我可以像 sql 一样操作它,例如通过将错误数据与另一个包含错误数据和正确条目的表进行匹配来清理数据。然后按类型求和按时间平均期间之类的.. 总数据文件大约有 500,000 行.. 我并不担心将所有内容都放在内存中,而是想尽我所能解决一般情况,所以我知道可以做什么而不求助于数据库

import csv, sys, zipfile
sys.argv[0] = "/home/tom/Documents/REdata/AllListing1RES.zip"
zip_file = zipfile.ZipFile(sys.argv[0])
items_file = zip_file.open('AllListing1RES.txt', 'rU')
for row in csv.DictReader(items_file, dialect='excel', delimiter='\t'):
pass
# Then is my result is
>>> for key in row:
print 'key=%s, value=%s' % (key, row[key])
key=YEAR_BUILT_DESC, value=EXIST
key=SUBDIVISION, value=KNOLLWOOD
key=DOM, value=2
key=STREET_NAME, value=ORLEANS RD
key=BEDROOMS, value=3
key=SOLD_PRICE, value=
key=PROP_TYPE, value=SFR
key=BATHS_FULL, value=2
key=PENDING_DATE, value=
key=STREET_NUM, value=3828
key=SOLD_DATE, value=
key=LIST_PRICE, value=324900
key=AREA, value=200
key=STATUS_DATE, value=3/3/2011 11:54:56 PM
key=STATUS, value=A
key=BATHS_HALF, value=0
key=YEAR_BUILT, value=1968
key=ZIP, value=35243
key=COUNTY, value=JEFF
key=MLS_ACCT, value=492859
key=CITY, value=MOUNTAIN BROOK
key=OWNER_NAME, value=SPARKS
key=LIST_DATE, value=3/3/2011
key=DATE_MODIFIED, value=3/4/2011 12:04:11 AM
key=PARCEL_ID, value=28-15-3-009-001.0000
key=ACREAGE, value=0
key=WITHDRAWN_DATE, value=
>>>

我想我在这里咆哮了一些错误的树......一是我的大约 500,000 行数据文件中只有 1 行。二是似乎 dict 可能不是正确的结构,因为我认为我不能只加载所有 500,000 行并对它们进行各种操作。喜欢..按组和日期求和..此外,重复键似乎可能会导致问题,即非唯一描述符,如县和分区。

我也不知道如何将一个特定的小行子集读入内存(比如 10 或 100 来测试,在加载所有之前(我也不知道......)我已经阅读了 Python 文档和几本引用书,但它还没有点击..

似乎我能找到的大多数答案都建议对这类事情使用各种 SQL 解决方案,但我很想学习使用 Python 实现类似结果的基础知识。在某些情况下,我认为它会更容易、更快,并且会扩展我的工具集。但我很难找到相关示例。

一个暗示我的意思的答案是:

Once the reading is done right, DictReader should work for getting rows as dictionaries, a typical row-oriented structure. Oddly enough, this isn't normally the efficient way to handle queries like yours; having only column lists makes searches a lot easier. Row orientation means you have to redo some lookup work for every row. Things like date matching requires data that is certainly not present in a CSV, like how dates are represented and which columns are dates.

An example of getting a column-oriented data structure (however, involving loading the whole file):

import csv
allrows=list(csv.reader(open('test.csv')))
# Extract the first row as keys for a columns dictionary
columns=dict([(x[0],x[1:]) for x in zip(*allrows)])
The intermediate steps of going to list and storing in a variable aren't necessary.
The key is using zip (or its cousin itertools.izip) to transpose the table.
Then extracting column two from all rows with a certain criterion in column one:

matchingrows=[rownum for (rownum,value) in enumerate(columns['one']) if value>2]
print map(columns['two'].__getitem__, matchingrows)
When you do know the type of a column, it may make sense to parse it, using appropriate
functions like datetime.datetime.strptime.

来自 Yann Vernier

这个一般主题肯定有一些很好的引用吗?

最佳答案

您一次只能从 csv 阅读器读取一行,但您可以很容易地将它们全部存储在内存中:

rows = []
for row in csv.DictReader(items_file, dialect='excel', delimiter='\t'):
rows.append(row)

# rows[0]
{'keyA': 13, 'keyB': 'dataB' ... }
# rows[1]
{'keyA': 5, 'keyB': 'dataB' ... }

然后,进行聚合和计算:

sum(row['keyA'] for row in rows)

您可能希望在数据进入 之前对其进行转换,或者使用更友好的数据结构。为每个计算迭代超过 500,000 行可能会变得非常低效。

正如一位评论者所提到的,使用内存数据库可能对您非常有益。 another question确切询问如何将 csv 数据传输到 sqlite 数据库。

import csv
import sqlite3

conn = sqlite3.connect(":memory:")
c = conn.cursor()
c.execute("create table t (col1 text, col2 float);")

# csv.DictReader uses the first line in the file as column headings by default
dr = csv.DictReader(open('data.csv', delimiter=','))
to_db = [(i['col1'], i['col2']) for i in dr]
c.executemany("insert into t (col1, col2) values (?, ?);", to_db)

关于Python内存表数据结构分析(dict、list、combo),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5696582/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com