gpt4 book ai didi

python - 如何查看牛顿法运行的迭代次数?

转载 作者:太空狗 更新时间:2023-10-30 02:49:07 25 4
gpt4 key购买 nike

所以基本上我想获取我的牛顿法求根所需的迭代次数,然后获取该数字并将其应用到我的配色方案中,使迭代次数越长,颜色越深,并且越少,颜色越饱满。

这是我的代码

from numpy import *
import pylab as pl
def myffp(x):
return x**3 - 1, 3*(x**2)
def newton( ffp, x, nits):
for i in range(nits):
#print i,x
f,fp = ffp(x)
x = x - f/fp
return x
q = sqrt(3)/2
def leggo(xmin=-1,xmax=1,jmin=-1,jmax=1,pts=1000,nits=30):
x = linspace(xmin, xmax, pts)
y = linspace(jmin, jmax, pts)*complex(0,1)
x1,y1 = meshgrid(x,y)
n = newton(myffp,x1+y1,nits) #**here is where i wanna see the number of iterations newton's method takes to find my root**
r1 = complex(1,0)
r2 = complex(-.5, q)
r3 = complex(-.5,-q)
data = zeros((pts,pts,3))
data[:,:,0] = abs(n-r1) #**and apply it here**
data[:,:,2] = abs(n-r2)
data[:,:,1] = abs(n-r3)
pl.show(pl.imshow(data))
leggo()

主要问题是找到迭代次数,然后我可以弄清楚如何将其应用于使颜色变暗,但目前它只是找到通过牛顿方法运行的每个值所需的迭代次数。

最佳答案

也许最简单的方法就是重构您的 newton 函数,以便它跟踪总迭代次数,然后返回它(当然连同结果),例如,

def newton( ffp, x, nits):
c = 0 # initialize iteration counter
for i in range(nits):
c += 1 # increment counter for each iteration
f, fp = ffp(x)
x = x - f/fp
return x, c # return the counter when the function is called

因此,在您的代码主体中,更改您对 newton 的调用,如下所示:

res, tot_iter = newton(myffp, x, nits)

上次调用 newton 的迭代次数存储在tot_iter


另外,您对牛顿法的实现似乎不完整。

例如,它缺少针对某些收敛标准的测试。

这是一个简单的 python 实现:

def newtons_method(x_init, fn, max_iter=100):
"""
returns: approx. val of root of the function passed in, fn;
pass in: x_init, initial value for the root;
max_iter, total iteration count not exceeded;
fn, a function of the form:
def f(x): return x**3 - 2*x
"""
x = x_init
eps = .0001
# set initial value different from x_init so at lesat 1 loop
x_old = x + 10 * eps
step = .1
c = 0
# (x - x_old) is convergence criterion
while (abs(x - x_old) > eps) and (c < max_iter):
c += 1
fval = fn(x)
dfdx = (fn(x + step)) - fn(x) / step
x_old = x
x = x_old - fval / dfdx
return x, c

关于python - 如何查看牛顿法运行的迭代次数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9643201/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com