gpt4 book ai didi

python - Anaconda 的 NumbaPro CUDA 断言错误

转载 作者:太空狗 更新时间:2023-10-30 02:47:08 27 4
gpt4 key购买 nike

我正在尝试使用 NumbaPro 的 cuda 扩展来乘以大型数组矩阵。最后我想要的是将大小为 NxN 的矩阵乘以一个对角矩阵,该矩阵将作为一维矩阵输入(因此,我发现 a.dot(numpy.diagflat(b)) 与* b).但是,我收到一个不提供任何信息的断言错误。

如果我将两个一维数组矩阵相乘,我只能避免这个断言错误,但这不是我想要做的。

from numbapro import vectorize, cuda
from numba import f4,f8
import numpy as np

def generate_input(n):
import numpy as np
A = np.array(np.random.sample((n,n)))
B = np.array(np.random.sample(n) + 10)
return A, B

def product(a, b):
return a * b

def main():
cu_product = vectorize([f4(f4, f4), f8(f8, f8)], target='gpu')(product)

N = 1000

A, B = generate_input(N)
D = np.empty(A.shape)

stream = cuda.stream()

with stream.auto_synchronize():
dA = cuda.to_device(A, stream)
dB = cuda.to_device(B, stream)
dD = cuda.to_device(D, stream, copy=False)
cu_product(dA, dB, out=dD, stream=stream)
dD.to_host(stream)

if __name__ == '__main__':
main()

这是我的终端输出的内容:

Traceback (most recent call last):
File "cuda_vectorize.py", line 32, in <module>
main()
File "cuda_vectorize.py", line 28, in main
cu_product(dA, dB, out=dD, stream=stream)
File "/opt/anaconda1anaconda2anaconda3/lib/python2.7/site-packages/numbapro/_cudadispatch.py", line 109, in __call__
File "/opt/anaconda1anaconda2anaconda3/lib/python2.7/site-packages/numbapro/_cudadispatch.py", line 191, in _arguments_requirement
AssertionError

最佳答案

问题是您正在对采用非标量参数的函数使用 vectorize。 NumbaPro 的vectorize 的想法是,它将标量函数作为输入,并生成一个将标量运算并行应用于向量的所有元素的函数。请参阅 NumbaPro documentation

你的函数接受一个矩阵和一个向量,它们绝对不是标量。 [编辑] 您可以使用 NumbaPro 的 cuBLAS 包装器或编写您自己的简单内核函数在 GPU 上做您想做的事。这是一个演示两者的示例。注意将需要 NumbaPro 0.12.2 或更高版本(在此编辑时刚刚发布)。

from numbapro import jit, cuda
from numba import float32
import numbapro.cudalib.cublas as cublas
import numpy as np
from timeit import default_timer as timer

def generate_input(n):
A = np.array(np.random.sample((n,n)), dtype=np.float32)
B = np.array(np.random.sample(n), dtype=A.dtype)
return A, B

@cuda.jit(argtypes=[float32[:,:], float32[:,:], float32[:]])
def diagproduct(c, a, b):
startX, startY = cuda.grid(2)
gridX = cuda.gridDim.x * cuda.blockDim.x;
gridY = cuda.gridDim.y * cuda.blockDim.y;
height, width = c.shape

for y in range(startY, height, gridY):
for x in range(startX, width, gridX):
c[y, x] = a[y, x] * b[x]

def main():

N = 1000

A, B = generate_input(N)
D = np.empty(A.shape, dtype=A.dtype)
E = np.zeros(A.shape, dtype=A.dtype)
F = np.empty(A.shape, dtype=A.dtype)

start = timer()
E = np.dot(A, np.diag(B))
numpy_time = timer() - start

blas = cublas.api.Blas()

start = timer()
blas.gemm('N', 'N', N, N, N, 1.0, np.diag(B), A, 0.0, D)
cublas_time = timer() - start

diff = np.abs(D-E)
print("Maximum CUBLAS error %f" % np.max(diff))

blockdim = (32, 8)
griddim = (16, 16)

start = timer()
dA = cuda.to_device(A)
dB = cuda.to_device(B)
dF = cuda.to_device(F, copy=False)
diagproduct[griddim, blockdim](dF, dA, dB)
dF.to_host()
cuda_time = timer() - start

diff = np.abs(F-E)
print("Maximum CUDA error %f" % np.max(diff))

print("Numpy took %f seconds" % numpy_time)
print("CUBLAS took %f seconds, %0.2fx speedup" % (cublas_time, numpy_time / cublas_time))
print("CUDA JIT took %f seconds, %0.2fx speedup" % (cuda_time, numpy_time / cuda_time))

if __name__ == '__main__':
main()

内核明显更快,因为 SGEMM 执行全矩阵乘法 (O(n^3)),并将对角线扩展为全矩阵。 diagproduct 函数更智能。它只是对每个矩阵元素进行一次乘法运算,而不会将对角线扩展为完整矩阵。以下是 N=1000 在我的 NVIDIA Tesla K20c GPU 上的结果:

Maximum CUBLAS error 0.000000
Maximum CUDA error 0.000000
Numpy took 0.024535 seconds
CUBLAS took 0.010345 seconds, 2.37x speedup
CUDA JIT took 0.004857 seconds, 5.05x speedup

时间包括进出 GPU 的所有副本,这对于小型矩阵来说是一个严重的瓶颈。如果我们将 N 设置为 10,000 并再次运行,我们将获得更大的加速:

Maximum CUBLAS error 0.000000
Maximum CUDA error 0.000000
Numpy took 7.245677 seconds
CUBLAS took 1.371524 seconds, 5.28x speedup
CUDA JIT took 0.264598 seconds, 27.38x speedup

然而,对于非常小的矩阵,CUBLAS SGEMM 具有优化路径,因此更接近 CUDA 性能。这里,N=100

Maximum CUBLAS error 0.000000
Maximum CUDA error 0.000000
Numpy took 0.006876 seconds
CUBLAS took 0.001425 seconds, 4.83x speedup
CUDA JIT took 0.001313 seconds, 5.24x speedup

关于python - Anaconda 的 NumbaPro CUDA 断言错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17153985/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com