- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
假设我有一个包含有限数量的唯一值的数组。说
data = array([30, 20, 30, 10, 20, 10, 20, 10, 30, 20, 20, 30, 30, 10, 30])
我还有一个引用数组,其中包含在 data
中找到的所有唯一值, 没有重复并且按照特定的顺序。说
reference = array([20, 10, 30])
我想创建一个与 data
形状相同的数组包含 reference
中的索引作为值data
中每个元素的数组找到数组。
换句话说,有 data
和 reference
, 我想创建一个数组 indexes
使得以下内容成立。
data = reference[indexes]
计算 indexes
的次优方法会像这样使用 for 循环
indexes = np.zeros_like(data, dtype=int)
for i in range(data.size):
indexes[i] = np.where(data[i] == reference)[0]
但令我惊讶的是,没有numpythonic(因此速度更快!)的方法来做到这一点……有什么想法吗?
谢谢!
最佳答案
我们有 data
和 reference
作为 -
In [375]: data
Out[375]: array([30, 20, 30, 10, 20, 10, 20, 10, 30, 20, 20, 30, 30, 10, 30])
In [376]: reference
Out[376]: array([20, 10, 30])
暂时,让我们考虑一个排序版本的reference
-
In [373]: np.sort(reference)
Out[373]: array([10, 20, 30])
现在,我们可以使用np.searchsorted
找出每个 data
元素在此排序版本中的位置,就像这样 -
In [378]: np.searchsorted(np.sort(reference), data, side='left')
Out[378]: array([2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 2, 2, 0, 2], dtype=int64)
如果我们运行原始代码,预期的输出结果是 -
In [379]: indexes
Out[379]: array([2, 0, 2, 1, 0, 1, 0, 1, 2, 0, 0, 2, 2, 1, 2])
可以看出,searchsorted
输出很好,除了其中的 0
必须是 1
和 1
必须更改为 0
。现在,我们已经将 reference
的排序版本纳入计算。因此,要进行 0
到 1
的更改,反之亦然,我们需要引入用于排序 reference
的索引,即 np.argsort(引用)
。这基本上就是矢量化无循环或无字典方法!所以,最终的实现看起来像这样 -
# Get sorting indices for reference
sort_idx = np.argsort(reference)
# Sort reference and get searchsorted indices for data in reference
pos = np.searchsorted(reference[sort_idx], data, side='left')
# Change pos indices based on sorted indices for reference
out = np.argsort(reference)[pos]
运行时测试 -
In [396]: data = np.random.randint(0,30000,150000)
...: reference = np.unique(data)
...: reference = reference[np.random.permutation(reference.size)]
...:
...:
...: def org_approach(data,reference):
...: indexes = np.zeros_like(data, dtype=int)
...: for i in range(data.size):
...: indexes[i] = np.where(data[i] == reference)[0]
...: return indexes
...:
...: def vect_approach(data,reference):
...: sort_idx = np.argsort(reference)
...: pos = np.searchsorted(reference[sort_idx], data, side='left')
...: return sort_idx[pos]
...:
In [397]: %timeit org_approach(data,reference)
1 loops, best of 3: 9.86 s per loop
In [398]: %timeit vect_approach(data,reference)
10 loops, best of 3: 32.4 ms per loop
验证结果-
In [399]: np.array_equal(org_approach(data,reference),vect_approach(data,reference))
Out[399]: True
关于python - 使用第二个数组作为引用对 numpy 数组的元素进行分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31078160/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!