- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试从 sklearn-learn 加载我的分类器的 pkl 转储。
对于我的对象,joblib 转储比 cPickle 转储压缩得更好,所以我想坚持使用它。但是,我在尝试从 AWS S3 读取对象时遇到错误。
案例:
请注意,joblib 和 pickle 的 pkl 对象是使用各自方法转储的不同对象。 (即 joblib 仅加载 joblib.dump(obj),pickle 仅加载 cPickle.dump(obj)。
Joblib 与 cPickle 代码
# case 2, this works for joblib, object pushed to heroku
resources_dir = os.getcwd() + "/static/res/" # main resource directory
input = joblib.load(resources_dir + 'classifier.pkl')
# case 3, this does not work for joblib, object hosted on s3
aws_app_assets = "https://%s.s3.amazonaws.com/static/res/" % keys.AWS_BUCKET_NAME
classifier_url_s3 = aws_app_assets + 'classifier.pkl'
# does not work with raw url, IO Error
classifier = joblib.load(classifier_url_s3)
# urrllib2, can't open instance
# TypeError: coercing to Unicode: need string or buffer, instance found
req = urllib2.Request(url=classifier_url_s3)
f = urllib2.urlopen(req)
classifier = joblib.load(urllib2.urlopen(classifier_url_s3))
# but works with a cPickle object hosted on S3
classifier = cPickle.load(urllib2.urlopen(classifier_url_s3))
我的应用程序在情况 2 中运行良好,但由于加载速度非常慢,我想尝试将所有静态文件推送到 S3,尤其是这些 pickle 转储。 joblib 的加载方式与 pickle 的加载方式有本质上的不同会导致此错误吗?
这是我的错误
File "/usr/local/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 409, in load
with open(filename, 'rb') as file_handle:
IOError: [Errno 2] No such file or directory: classifier url on s3
[Finished in 0.3s with exit code 1]
这不是权限问题,因为我已将 s3 上的所有对象公开进行测试并且 pickle.dump 对象加载正常。如果我直接在浏览器中输入 url,joblib.dump 对象也会下载
我可能完全遗漏了一些东西。
谢谢。
最佳答案
joblib.load() 需要文件系统上存在的文件名。
Signature: joblib.load(filename, mmap_mode=None)
Parameters
-----------
filename: string
The name of the file from which to load the object
此外,公开您的所有资源对于其他 Assets 来说可能不是一个好主意,即使您不介意 pickled 模型可供全世界访问。
首先将对象从 S3 复制到您的 worker 的本地文件系统非常简单:
from boto.s3.connection import S3Connection
from sklearn.externals import joblib
import os
s3_connection = S3Connection(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
s3_bucket = s3_connection.get_bucket(keys.AWS_BUCKET_NAME)
local_file = '/tmp/classifier.pkl'
s3_bucket.get_key(aws_app_assets + 'classifier.pkl').get_contents_to_filename(local_file)
clf = joblib.load(local_file)
os.remove(local_file)
希望这对您有所帮助。
附言您可以使用这种方法来 pickle 整个 sklearn
管道。这也包括特征插补。请注意训练和预测之间库的版本冲突。
关于python - 来自 AWS S3 的 Sklearn joblib 加载函数 IO 错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32233630/
我知道有几个类似的问题被问到,但我的问题仍然没有得到解答。 问题来了。我使用命令 python3 -m pip3 install -U scikit-learn 来安装 sklearn、numpy 和
_train_weather.values : [[ 0.61818182 0.81645199 0.6679803 ..., 0. 0. 1.
如果我有一个数据集X及其标签Y,那么我将其分为训练集和测试集,scle为0.2,并使用随机种子进行洗牌: 11 >>>X.shape (10000, 50,50) train_data, test_d
首先我查看了所有相关问题。给出了非常相似的问题。 所以我遵循了链接中的建议,但没有一个对我有用。 Data Conversion Error while applying a function to
这里有两种标准化方法: 1:这个在数据预处理中使用:sklearn.preprocessing.normalize(X,norm='l2') 2:分类方法中使用另一种方法:sklearn.svm.Li
所以刚看了一个教程,作者不需要import sklearn使用时 predict anaconda 环境中pickled 模型的功能(安装了sklearn)。 我试图在 Google Colab 中重
我想评估我的机器学习模型。我使用 roc_auc_score() 计算了 ROC 曲线下的面积,并使用 sklearn 的 plot_roc_curve() 函数绘制了 ROC 曲线。在第二个函数中,
我一直在寻找此信息,但在任何地方都找不到,所以这是我的镜头。 我是Python 2.7的初学者,我学习了一个模型,感谢cPickle我保存了它,但现在我想知道是否可以从另一个设备(没有sklearn库
>>> import sklearn.model_selection.train_test_split Traceback (most recent call last): File "", li
在阅读有关使用 python 的 LinearDiscriminantAnalysis 的过程中,我有两种不同的方法来实现它,可在此处获得, http://scikit-learn.org/stabl
我正在使用 sklearn,我注意到 sklearn.metrics.plot_confusion_matrix 的参数和 sklearn.metrics.confusion_matrix不一致。 p
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我想看看模型是否收敛于我的交叉验证。我如何增加或减少 sklearn.svm.SVC 中的时代? 目前: SVM_Model = SVC(gamma='auto') SVM_Model.fit(X_t
有人可以帮助我吗?我很难知道它们之间的区别 from sklearn.model_selection import train_test_split from sklearn.cross_valida
我需要提取在 sklearn.ensemble.BaggingClassifier 中训练的每个模型的概率。这样做的原因是为了估计 XGBoostClassifier 模型的不确定性。 为此,我创建了
无法使用 scikit-learn 0.19.1 导入 sklearn.qda 和 sklearn.lda 我得到: 导入错误:没有名为“sklearn.qda”的模块 导入错误:没有名为“sklea
我正在尝试在 google cloud ai 平台上创建一个版本,但找不到 impute 模块 No module named 'sklearn.impute._base; 'sklearn.impu
我在 PyQt5 中编写了一个 GUI,其中包括以下行 from sklearn.ensemble import RandomForestClassifier 。 遵循this answer中的建议,
我正在做一个 Kaggle 比赛,需要输入一些缺失的数据。我安装了最新的Anaconda(4.5.4)具有所有相关依赖项(即 scikit-learn (0.19.1) )。 当我尝试导入模块时,出现
在安装了所需的模块后,我正在尝试将imblearn导入到我的Python笔记本中。但是,我收到以下错误:。。附加信息:我使用的是一个用Visual Studio代码编写的虚拟环境。。我已经确定venv
我是一名优秀的程序员,十分优秀!