gpt4 book ai didi

python sklearn : fit_transform() does not work for GridSearchCV

转载 作者:太空狗 更新时间:2023-10-30 02:43:07 24 4
gpt4 key购买 nike

我正在创建一个 GridSearchCV 分类器作为

pipeline = Pipeline([
('vect', TfidfVectorizer(stop_words='english',sublinear_tf=True)),
('clf', LogisticRegression())
])

parameters= {}

gridSearchClassifier = GridSearchCV(pipeline, parameters, n_jobs=3, verbose=1, scoring='accuracy')
# Fit/train the gridSearchClassifier on Training Set
gridSearchClassifier.fit(Xtrain, ytrain)

这很有效,我可以预测。但是,现在我想重新训练分类器。为此,我想对一些反馈数据执行 fit_transform()

    gridSearchClassifier.fit_transform(Xnew, yNew)

但是我得到这个错误

AttributeError: 'GridSearchCV' object has no attribute 'fit_transform'

基本上我正在尝试在分类器的内部 TfidfVectorizer 上执行 fit_transform()。我知道我可以使用 named_steps 属性访问 Pipeline 的内部组件。我可以为 gridSearchClassifier 做类似的事情吗?

最佳答案

一步步调用即可。

gridSearchClassifier.fit(Xnew, yNew)
transformed = gridSearchClassifier.transform(Xnew)

fit_transform 只不过是这两行代码,根本没有实现为 GridSearchCV 的单一方法。

更新

从评论来看,您似乎有点迷失了 GridSearchCV 的实际功能。这是一种元方法,用于拟合具有多个超参数的模型。因此,一旦您调用 fit,您就会在对象的 best_estimator_ 字段中获得一个估算器。在你的情况下 - 它是一个管道,你可以像往常一样提取它的任何部分,因此

gridSearchClassifier.fit(Xtrain, ytrain)
clf = gridSearchClassifier.best_estimator_
# do something with clf, its elements etc.
# for example print clf.named_steps['vect']

您应该将 gridsearchcv 用作分类器,这只是一种拟合超参数的方法,一旦找到它们,您应该改用 best_estimator_。但是,请记住,如果 retrofit TFIDF 向量化器,那么您的分类器将毫无用处;您不能更改数据表示并期望旧模型运行良好,一旦数据更改,您必须重新调整整个分类器(除非这是经过精心设计的更改,并且您确保旧尺寸意味着完全相同 - sklearn 不支持此类操作,你将不得不从头开始实现)。

关于 python sklearn : fit_transform() does not work for GridSearchCV,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34548576/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com