- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我是 TensorFlow 的新手。我正在使用自己的训练数据库进行图像分类。
但是,在我训练了自己的数据集之后,我不知道如何对输入图像进行分类。
这是我准备我自己的数据集的代码
filenames = ['01.jpg', '02.jpg', '03.jpg', '04.jpg']
label = [0,1,1,1]
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
filename, content = reader.read(filename_queue)
image = tf.image.decode_jpeg(content, channels=3)
image = tf.cast(image, tf.float32)
resized_image = tf.image.resize_images(image, 224, 224)
image_batch , label_batch= tf.train.batch([resized_image,label], batch_size=8, num_threads = 3, capacity=5000)
这是训练数据集的正确代码吗?
之后,我尝试用它对输入图像进行分类,代码如下。
test = ['test.jpg', 'test2.jpg']
test_queue=tf.train.string_input_producer(test)
reader = tf.WholeFileReader()
testname, test_content = reader.read(test_queue)
test = tf.image.decode_jpeg(test_content, channels=3)
test = tf.cast(test, tf.float32)
resized_image = tf.image.resize_images(test, 224,224)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
res = sess.run(resized_image)
coord.request_stop()
coord.join(threads)
但是,它不会返回输入图像的预测标签。我正在找人教我如何使用我自己的数据集对图像进行分类。
谢谢。
最佳答案
也许你可以在安装 PIL python lib 之后尝试这个:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import math
import numpy
import numpy as np
import random
from PIL import Image
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 4, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
NUM_CLASSES = 2
IMAGE_SIZE = 28
CHANNELS = 3
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE * CHANNELS
def inference(images, hidden1_units, hidden2_units):
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def cal_loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def training(loss, learning_rate):
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def placeholder_inputs(batch_size):
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder
def fill_feed_dict(images_feed,labels_feed, images_pl, labels_pl):
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = 4 // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = true_count / num_examples
print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' %
(num_examples, true_count, precision))
# Get the sets of images and labels for training, validation, and
train_images = []
for filename in ['01.jpg', '02.jpg', '03.jpg', '04.jpg']:
image = Image.open(filename)
image = image.resize((IMAGE_SIZE,IMAGE_SIZE))
train_images.append(np.array(image))
train_images = np.array(train_images)
train_images = train_images.reshape(4,IMAGE_PIXELS)
label = [0,1,1,1]
train_labels = np.array(label)
def run_training():
# Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Generate placeholders for the images and labels.
images_placeholder, labels_placeholder = placeholder_inputs(4)
# Build a Graph that computes predictions from the inference model.
logits = inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2)
# Add to the Graph the Ops for loss calculation.
loss = cal_loss(logits, labels_placeholder)
# Add to the Graph the Ops that calculate and apply gradients.
train_op = training(loss, FLAGS.learning_rate)
# Add the Op to compare the logits to the labels during evaluation.
eval_correct = evaluation(logits, labels_placeholder)
# Create a saver for writing training checkpoints.
saver = tf.train.Saver()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Run the Op to initialize the variables.
init = tf.initialize_all_variables()
sess.run(init)
# And then after everything is built, start the training loop.
for step in xrange(FLAGS.max_steps):
start_time = time.time()
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
# Print status to stdout.
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, FLAGS.train_dir, global_step=step)
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
train_images)
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()
关于python - TensorFlow 图像分类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37450620/
我正在尝试学习 Knockout 并尝试创建一个照片 uploader 。我已成功将一些图像存储在数组中。现在我想回帖。在我的 knockout 码(Javascript)中,我这样做: 我在 Jav
我正在使用 php 编写脚本。我的典型问题是如何在 mysql 中添加一个有很多替代文本和图像的问题。想象一下有机化学中具有苯结构的描述。 最有效的方法是什么?据我所知,如果我有一个图像,我可以在数据
我在两个图像之间有一个按钮,我想将按钮居中到图像高度。有人可以帮帮我吗? Entrar
下面的代码示例可以在这里查看 - http://dev.touch-akl.com/celebtrations/ 我一直在尝试做的是在 Canvas 上绘制 2 个图像(发光,然后耀斑。这些图像的链接
请检查此https://jsfiddle.net/rhbwpn19/4/ 图像预览对于第一篇帖子工作正常,但对于其他帖子则不然。 我应该在这里改变什么? function readURL(input)
我对 Canvas 有疑问。我可以用单个图像绘制 Canvas ,但我不能用单独的图像绘制每个 Canvas 。- 如果数据只有一个图像,它工作正常,但数据有多个图像,它不工作你能帮帮我吗? va
我的问题很简单。如何获取 UIImage 的扩展类型?我只能将图像作为 UIImage 而不是它的名称。图像可以是静态的,也可以从手机图库甚至文件路径中获取。如果有人可以为此提供一点帮助,将不胜感激。
我有一个包含 67 个独立路径的 SVG 图像。 是否有任何库/教程可以为每个路径创建单独的光栅图像(例如 PNG),并可能根据路径 ID 命名它们? 最佳答案 谢谢大家。我最终使用了两个答案的组合。
我想将鼠标悬停在一张图片(音乐专辑)上,然后播放一张唱片,所以我希望它向右移动并旋转一点,当它悬停时我希望它恢复正常动画片。它已经可以向右移动,但我无法让它随之旋转。我喜欢让它尽可能简单,因为我不是编
Retina iOS 设备不显示@2X 图像,它显示 1X 图像。 我正在使用 Xcode 4.2.1 Build 4D502,该应用程序的目标是 iOS 5。 我创建了一个测试应用(主/细节)并添加
我正在尝试从头开始以 Angular 实现图像 slider ,并尝试复制 w3school基于图像 slider 。 下面我尝试用 Angular 实现,谁能指导我如何使用 Angular 实现?
我正在尝试获取图像的图像数据,其中 w= 图像宽度,h = 图像高度 for (int i = x; i imageData[pos]>0) //Taking data (here is the pr
我的网页最初通过在 javascript 中动态创建图像填充了大约 1000 个缩略图。由于权限问题,我迁移到 suPHP。现在不用标准 标签本身 我正在通过这个 php 脚本进行检索 $file
我正在尝试将 python opencv 图像转换为 QPixmap。 我按照指示显示Page Link我的代码附在下面 img = cv2.imread('test.png')[:,:,::1]/2
我试图在这个 Repository 中找出语义分割数据集的 NYU-v2 . 我很难理解图像标签是如何存储的。 例如,给定以下图像: 对应的标签图片为: 现在,如果我在 OpenCV 中打开标签图像,
import java.util.Random; class svg{ public static void main(String[] args){ String f="\"
我有一张 8x8 的图片。 (位图 - 可以更改) 我想做的是能够绘制一个形状,给定一个 Path 和 Paint 对象到我的 SurfaceView 上。 目前我所能做的就是用纯色填充形状。我怎样才
要在页面上显示图像,你需要使用源属性(src)。src 指 source 。源属性的值是图像的 URL 地址。 定义图像的语法是: 在浏览器无法载入图像时,替换文本属性告诉读者她们失去的信息。此
**MMEditing是基于PyTorch的图像&视频编辑开源工具箱,支持图像和视频超分辨率(super-resolution)、图像修复(inpainting)、图像抠图(matting)、
我正在尝试通过资源文件将图像插入到我的程序中,如下所示: green.png other files 当我尝试使用 QImage 或 QPixm
我是一名优秀的程序员,十分优秀!