gpt4 book ai didi

python - 具有相同列、不同索引级别的算术和对齐 DataFrame

转载 作者:太空狗 更新时间:2023-10-30 02:33:20 24 4
gpt4 key购买 nike

我有两个 pandas DataFrame - weightLand Use 列上有一个简单的索引。 concentrationLand UseParameter 上有一个 MultiIndex。

import pandas
from io import StringIO

conc_string = StringIO("""\
Land Use,Parameter,1E,1N,1S,2
Airfield,BOD5 (mg/l),0.418,0.118,0.226,1.063
Airfield,Ortho P (mg/l),0.002,0.001,0.001,0.002
Airfield,TSS (mg/l),1.773,11.47,0.862,0.183
Airfield,Zn (mg/l),0.001,0.001,4.95E-05,0.001
"Commercial",BOD5 (mg/l),0.036,0.0419,,0.315
"Commercial",Cu (mg/l),4.37E-05,7.34E-05,,0.00039
"Commercial",O&G (mg/l),0.0385,0.127,,0.263
Open Space,TSS (mg/l),0.371,3.01,1.209,0.147
Open Space,Zn (mg/l),0.0127,0.0069,0.0132,0.007
"Parking Lot",BOD5 (mg/l),0.924,0.0668,2.603,3.19
"Parking Lot",O&G (mg/l),1.02,0.149,1.347,1.88
"Rooftops",BOD5 (mg/l),0.135,1.00,0.0562,0.310""")

weight_string = StringIO("""\
Land Use,1E,1N,1S,2
Airfield,0.511,0.0227,0.0616,0.394
Commercial,0.0005,0.1704,0,0.1065
Open Space,0.0008,0.005,0.0002,0.0004
"Parking Lot",0.33,0.514,0.252,0.171
Rooftops,0.081,0.028,8.50E-05,0.003""")

concentration = pandas.read_csv(conc_string, index_col=[0,1])
weight = pandas.read_csv(weight_string, index_col=0)

在这种情况下,列(1E、1N、1S 和 2)是流域盆地。

我想做的是将独立于 Parameter 的所有浓度除以盆地(列名)和 Land Use 的权重。

我在这里运气不佳。 浓度/重量当然不行。我没有太多运气堆叠数据框并加入其中一个

wstk = pandas.DataFrame(weight.stack())
wstk.index.names = ['Land Use', 'Basin']
wstk.rename(columns={0:'weight'}, inplace=True)

cstk = pandas.DataFrame(concentration.stack())
cstk.index.names = ['Land Use', 'Parameter', 'Basin']
cstk.rename(columns={0:'concentration'}, inplace=True)

wstk.join(cstk, on=['Land Use', 'Basin']) # fails
cstk.join(wstk, on=['Land Use', 'Basin']) # fails

当我离开 on kwarg 时,最后两行不会引发错误,而是返回连接列的 NaN 结果。如果我在两个堆叠的 DataFrame 上删除索引(例如,在加入之前执行 wstk.reset_index(inplace=True)),它们也会失败。

有什么建议吗?

最佳答案

使用 DataFrame div 方法并为您要广播的多索引传递 matchkey:

来自 div 的文档:

level : int or name
Broadcast across a level, matching Index values on the
passed MultiIndex level

In [39]: concentration.div(weight, level='Land Use')
Out[39]:
1E 1N 1S 2
Land Use Parameter
Airfield BOD5 (mg/l) 0.818004 5.198238 3.668831 2.697970
Ortho P (mg/l) 0.003914 0.044053 0.016234 0.005076
TSS (mg/l) 3.469667 505.286344 13.993506 0.464467
Zn (mg/l) 0.001957 0.044053 0.000804 0.002538
Commercial BOD5 (mg/l) 72.000000 0.245892 NaN 2.957746
Cu (mg/l) 0.087400 0.000431 NaN 0.003662
O&G (mg/l) 77.000000 0.745305 NaN 2.469484
Open Space TSS (mg/l) 463.750000 602.000000 6045.000000 367.500000
Zn (mg/l) 15.875000 1.380000 66.000000 17.500000
Parking Lot BOD5 (mg/l) 2.800000 0.129961 10.329365 18.654971
O&G (mg/l) 3.090909 0.289883 5.345238 10.994152
Rooftops BOD5 (mg/l) 1.666667 35.714286 661.176471 103.333333

关于python - 具有相同列、不同索引级别的算术和对齐 DataFrame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13940753/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com