gpt4 book ai didi

python - 如何加速矩阵码

转载 作者:太空狗 更新时间:2023-10-30 02:32:02 25 4
gpt4 key购买 nike

我有以下简单代码,它估计 h x n 二进制矩阵具有特定属性的概率。它以指数时间运行(开始时很糟糕)但令我惊讶的是即使对于 n = 12 和 h = 9,它也如此缓慢。

#!/usr/bin/python

import numpy as np
import itertools

n = 12
h = 9

F = np.matrix(list(itertools.product([0,1],repeat = n))).transpose()

count = 0
iters = 100
for i in xrange(iters):
M = np.random.randint(2, size=(h,n))
product = np.dot(M,F)
setofcols = set()
for column in product.T:
setofcols.add(repr(column))
if (len(setofcols)==2**n):
count = count + 1
print count*1.0/iters

我已经使用 n = 10 和 h = 7 对其进行了分析。输出相当长,但这里是花费更多时间的行。

        23447867 function calls (23038179 primitive calls) in 35.785 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.002 0.001 0.019 0.010 __init__.py:1(<module>)
1 0.001 0.001 0.054 0.054 __init__.py:106(<module>)
1 0.001 0.001 0.022 0.022 __init__.py:15(<module>)
2 0.003 0.002 0.013 0.006 __init__.py:2(<module>)
1 0.001 0.001 0.003 0.003 __init__.py:38(<module>)
1 0.001 0.001 0.001 0.001 __init__.py:4(<module>)
1 0.001 0.001 0.004 0.004 __init__.py:45(<module>)
1 0.001 0.001 0.002 0.002 __init__.py:88(<module>)
307200 0.306 0.000 1.584 0.000 _methods.py:24(_any)
102400 0.026 0.000 0.026 0.000 arrayprint.py:22(product)
102400 1.345 0.000 32.795 0.000 arrayprint.py:225(_array2string)
307200/102400 1.166 0.000 33.350 0.000 arrayprint.py:335(array2string)
716800 0.820 0.000 1.162 0.000 arrayprint.py:448(_extendLine)
204800/102400 1.699 0.000 5.090 0.000 arrayprint.py:456(_formatArray)
307200 0.651 0.000 22.510 0.000 arrayprint.py:524(__init__)
307200 11.783 0.000 21.859 0.000 arrayprint.py:538(fillFormat)
1353748 1.920 0.000 2.537 0.000 arrayprint.py:627(_digits)
102400 0.576 0.000 2.523 0.000 arrayprint.py:636(__init__)
716800 2.159 0.000 2.159 0.000 arrayprint.py:649(__call__)
307200 0.099 0.000 0.099 0.000 arrayprint.py:658(__init__)
102400 0.163 0.000 0.225 0.000 arrayprint.py:686(__init__)
102400 0.307 0.000 13.784 0.000 arrayprint.py:697(__init__)
102400 0.110 0.000 0.110 0.000 arrayprint.py:713(__init__)
102400 0.043 0.000 0.043 0.000 arrayprint.py:741(__init__)
1 0.003 0.003 0.003 0.003 chebyshev.py:87(<module>)
2 0.001 0.000 0.001 0.000 collections.py:284(namedtuple)
1 0.277 0.277 35.786 35.786 counterfeit.py:3(<module>)
205002 0.222 0.000 0.247 0.000 defmatrix.py:279(__array_finalize__)
102500 0.747 0.000 1.077 0.000 defmatrix.py:301(__getitem__)
102400 0.322 0.000 34.236 0.000 defmatrix.py:352(__repr__)
102400 0.100 0.000 0.508 0.000 fromnumeric.py:1087(ravel)
307200 0.382 0.000 2.829 0.000 fromnumeric.py:1563(any)
271 0.004 0.000 0.005 0.000 function_base.py:3220(add_newdoc)
1 0.003 0.003 0.003 0.003 hermite.py:59(<module>)
1 0.003 0.003 0.003 0.003 hermite_e.py:59(<module>)
1 0.001 0.001 0.002 0.002 index_tricks.py:1(<module>)
1 0.003 0.003 0.003 0.003 laguerre.py:59(<module>)
1 0.003 0.003 0.003 0.003 legendre.py:83(<module>)
1 0.001 0.001 0.001 0.001 linalg.py:10(<module>)
1 0.001 0.001 0.001 0.001 numeric.py:1(<module>)
102400 0.247 0.000 33.598 0.000 numeric.py:1365(array_repr)
204800 0.321 0.000 1.143 0.000 numeric.py:1437(array_str)
614400 1.199 0.000 2.627 0.000 numeric.py:2178(seterr)
614400 0.837 0.000 0.918 0.000 numeric.py:2274(geterr)
102400 0.081 0.000 0.186 0.000 numeric.py:252(asarray)
307200 0.259 0.000 0.622 0.000 numeric.py:322(asanyarray)
1 0.003 0.003 0.004 0.004 polynomial.py:54(<module>)
513130 0.134 0.000 0.134 0.000 {isinstance}
307229 0.075 0.000 0.075 0.000 {issubclass}
5985327/5985305 0.595 0.000 0.595 0.000 {len}
306988 0.120 0.000 0.120 0.000 {max}
102400 0.061 0.000 0.061 0.000 {method '__array__' of 'numpy.ndarray' objects}
102406 0.027 0.000 0.027 0.000 {method 'add' of 'set' objects}
307200 0.241 0.000 1.824 0.000 {method 'any' of 'numpy.ndarray' objects}
307200 0.482 0.000 0.482 0.000 {method 'compress' of 'numpy.ndarray' objects}
204800 0.035 0.000 0.035 0.000 {method 'item' of 'numpy.ndarray' objects}
102451 0.014 0.000 0.014 0.000 {method 'join' of 'str' objects}
102400 0.222 0.000 0.222 0.000 {method 'ravel' of 'numpy.ndarray' objects}
921176 3.330 0.000 3.330 0.000 {method 'reduce' of 'numpy.ufunc' objects}
102405 0.057 0.000 0.057 0.000 {method 'replace' of 'str' objects}
2992167 0.660 0.000 0.660 0.000 {method 'rstrip' of 'str' objects}
102400 0.041 0.000 0.041 0.000 {method 'splitlines' of 'str' objects}
6 0.003 0.000 0.003 0.001 {method 'sub' of '_sre.SRE_Pattern' objects}
307276 0.090 0.000 0.090 0.000 {min}
100 0.013 0.000 0.013 0.000 {numpy.core._dotblas.dot}
409639 0.473 0.000 0.473 0.000 {numpy.core.multiarray.array}
1228800 0.239 0.000 0.239 0.000 {numpy.core.umath.geterrobj}
614401 0.352 0.000 0.352 0.000 {numpy.core.umath.seterrobj}
102475 0.031 0.000 0.031 0.000 {range}
102400 0.076 0.000 0.102 0.000 {reduce}
204845/102445 0.198 0.000 34.333 0.000 {repr}

矩阵的乘法似乎只需要一小部分时间。是否可以加快其余部分?

结果

现在有三个答案,但目前似乎有一个错误。我用 n=18、h=11 和 iters=10 测试了剩下的两个。

  • 气泡 - 21 秒,185MB 内存。 “排序”16 秒。
  • hpaulj - 7.5 秒,130MB 内存。 “tolist”3 秒。 “numpy.core.multiarray.array”1.5 秒,“genexpr”(“设置”行)1.5 秒。

有趣的是,矩阵相乘的时间仍然只占总时间的一小部分。

最佳答案

要加快上面的代码,您应该避免循环。

import numpy as np
import itertools

def unique_rows(a):
a = np.ascontiguousarray(a)
unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))


n = 12
h = 9
iters=100
F = np.matrix(list(itertools.product([0,1],repeat = n))).transpose()
M = np.random.randint(2, size=(h*iters,n))
product = np.dot(M,F)
counts = map(lambda x: len(unique_rows(x.T))==2**n, np.split(product,iters,axis=0))
prob=float(sum(counts))/iters

#All unique submatrices M (hxn) with the sophisticated property...
[np.split(M,iters,axis=0)[j] for j in range(len(counts)) if counts[j]==True]

关于python - 如何加速矩阵码,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20542552/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com