- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有下一个 DataFrame:
data=pd.read_csv('anual.csv', parse_dates='Fecha', index_col=0)
data
DatetimeIndex: 290 entries, 2011-01-01 00:00:00 to 2011-12-31 00:00:00
Data columns (total 12 columns):
HR 290 non-null values
PreciAcu 290 non-null values
RadSolar 290 non-null values
T 290 non-null values
Presion 290 non-null values
Tmax 290 non-null values
HRmax 290 non-null values
Presionmax 290 non-null values
RadSolarmax 290 non-null values
Tmin 290 non-null values
HRmin 290 non-null values
Presionmin 290 non-null values
dtypes: float64(4), int64(8)
哪里:
data['HR']
Fecha
2011-01-01 37
2011-02-01 70
2011-03-01 62
2011-04-01 69
2011-05-01 72
2011-06-01 71
2011-07-01 71
2011-08-01 70
2011-09-01 40
...
2011-12-17 92
2011-12-18 78
2011-12-19 79
2011-12-20 76
2011-12-21 78
2011-12-22 80
2011-12-23 72
2011-12-24 70
此外,有些月份并不总是完整的。我的目标是根据每日数据计算每个月的平均值。这是通过以下方式实现的:
monthly=data.resample('M', how='mean')
HR PreciAcu RadSolar T Presion Tmax
Fecha
2011-01-31 68.586207 3.744828 163.379310 17.496552 0 25.875862
2011-02-28 68.666667 1.966667 208.000000 18.854167 0 28.879167
2011-03-31 69.136364 3.495455 218.090909 20.986364 0 30.359091
2011-04-30 68.956522 1.913043 221.130435 22.165217 0 31.708696
2011-05-31 72.700000 0.550000 201.100000 18.900000 0 27.460000
2011-06-30 70.821429 6.050000 214.000000 23.032143 0 30.621429
2011-07-31 78.034483 5.810345 188.206897 21.503448 0 27.951724
2011-08-31 71.750000 1.028571 214.750000 22.439286 0 30.657143
2011-09-30 72.481481 0.185185 196.962963 21.714815 0 29.596296
2011-10-31 68.083333 1.770833 224.958333 18.683333 0 27.075000
2011-11-30 71.750000 0.812500 169.625000 18.925000 0 26.237500
2011-12-31 71.833333 0.160000 159.533333 17.260000 0 25.403333
我发现的第一个错误出现在降水量列中,因为 1 月份的所有观测值均为 0,而该特定月份的平均值为 3.74。
在 Excel 中取平均值并将其与上面的结果进行比较时,会发现存在显着差异。例如,Febrero 的 HR 均值为
mean HR using pandas=68.66
mean HR using excel=67
我发现的另一个细节:
data['PreciAcu']['2011-01'].count()
29 and should be 31
我做错了什么吗?我该如何解决这个错误?
附件 csv 文件:
最佳答案
您的日期列被误解了,因为它是 DD/MM/YYYY 格式。改为设置 dayfirst=True
:
>>> df = pd.read_csv('anual.csv', parse_dates='Fecha', dayfirst=True, index_col=0, sep="\s+")
>>> df['PreciAcu']['2011-01'].count()
31
>>> df.resample("M").mean()
HR PreciAcu RadSolar T Presion Tmax \
Fecha
2011-01-31 68.774194 0.000000 162.354839 16.535484 0 25.393548
2011-02-28 67.000000 0.000000 193.481481 15.418519 0 25.696296
2011-03-31 59.083333 0.850000 254.541667 21.295833 0 32.325000
2011-04-30 61.200000 1.312000 260.640000 24.676000 0 34.760000
2011-05-31 NaN NaN NaN NaN NaN NaN
2011-06-30 68.428571 8.576190 236.619048 25.009524 0 32.028571
2011-07-31 81.518519 11.488889 185.407407 22.429630 0 27.681481
2011-08-31 76.451613 0.677419 219.645161 23.677419 0 30.719355
2011-09-30 77.533333 2.883333 196.100000 21.573333 0 28.723333
2011-10-31 73.120000 1.260000 196.280000 19.552000 0 27.636000
2011-11-30 71.277778 -79.333333 148.555556 18.250000 0 26.511111
2011-12-31 73.741935 0.067742 134.677419 15.687097 0 24.019355
HRmax Presionmax Tmin
Fecha
2011-01-31 92.709677 0 10.909677
2011-02-28 92.111111 0 8.325926
2011-03-31 89.291667 0 13.037500
2011-04-30 89.400000 0 17.328000
2011-05-31 NaN NaN NaN
2011-06-30 92.095238 0 19.761905
2011-07-31 97.185185 0 18.774074
2011-08-31 96.903226 0 18.670968
2011-09-30 97.200000 0 16.373333
2011-10-31 97.000000 0 13.412000
2011-11-30 94.555556 0 11.877778
2011-12-31 94.161290 0 10.070968
[12 rows x 9 columns]
(注意,虽然 - 我忘记了这一点 - dayfirst=True
并不严格,请参阅 here 。也许使用 date_parser
会更安全。 )
关于python - 如何使用groupby获得 Pandas 的月均值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21030171/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!