gpt4 book ai didi

python - Pandas:将 IP 解析为国家/地区的最快方法

转载 作者:太空狗 更新时间:2023-10-30 02:27:38 25 4
gpt4 key购买 nike

我有一个函数 find_country_from_connection_ip,它接受一个 ip,经过一些处理后返回一个国家。如下所示:

def find_country_from_connection_ip(ip):
# Do some processing
return county

我正在使用 apply 方法中的函数。如下所示:

df['Country'] = df.apply(lambda x: find_country_from_ip(x['IP']), axis=1)

因为它非常简单,我想要的是从 DataFrame 中具有 >400000 行的现有列评估新列。

它运行,但非常慢并抛出如下异常:

...........: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

if name == 'main': In [38]:

我理解这个问题,但不太明白如何将 locapplylambda 一起使用。

注意请建议您是否有更有效的替代解决方案,可以带来最终结果。

**** 编辑 ********

该函数主要是在mmdb 数据库中查找,如下所示:

def find_country_from_ip(ip):
result = subprocess.Popen("mmdblookup --file GeoIP2-Country.mmdb --ip {} country names en".format(ip).split(" "), stdout=subprocess.PIPE).stdout.read()
if result:
return re.search(r'\"(.+?)\"', result).group(1)
else:
final_output = subprocess.Popen("mmdblookup --file GeoIP2-Country.mmdb --ip {} registered_country names en".format(ip).split(" "), stdout=subprocess.PIPE).stdout.read()
return re.search(r'\"(.+?)\"', final_output).group(1)

尽管如此,这是一项代价高昂的操作,当您有一个包含 >400000 行的 DataFrame 时,这应该需要一些时间。但是多少钱?就是那个问题。大约需要 2 小时,我认为差不多。

最佳答案

我会为此使用 maxminddb-geolite2 (GeoLite) 模块。

首先安装maxminddb-geolite2模块

pip install maxminddb-geolite2

Python 代码:

import pandas as pd
from geolite2 import geolite2

def get_country(ip):
try:
x = geo.get(ip)
except ValueError:
return pd.np.nan
try:
return x['country']['names']['en'] if x else pd.np.nan
except KeyError:
return pd.np.nan

geo = geolite2.reader()

# it took me quite some time to find a free and large enough list of IPs ;)
# IP's for testing: http://upd.emule-security.org/ipfilter.zip
x = pd.read_csv(r'D:\download\ipfilter.zip',
usecols=[0], sep='\s*\-\s*',
header=None, names=['ip'])

# get unique IPs
unique_ips = x['ip'].unique()
# make series out of it
unique_ips = pd.Series(unique_ips, index = unique_ips)
# map IP --> country
x['country'] = x['ip'].map(unique_ips.apply(get_country))

geolite2.close()

输出:

In [90]: x
Out[90]:
ip country
0 000.000.000.000 NaN
1 001.002.004.000 NaN
2 001.002.008.000 NaN
3 001.009.096.105 NaN
4 001.009.102.251 NaN
5 001.009.106.186 NaN
6 001.016.000.000 NaN
7 001.055.241.140 NaN
8 001.093.021.147 NaN
9 001.179.136.040 NaN
10 001.179.138.224 Thailand
11 001.179.140.200 Thailand
12 001.179.146.052 NaN
13 001.179.147.002 Thailand
14 001.179.153.216 Thailand
15 001.179.164.124 Thailand
16 001.179.167.188 Thailand
17 001.186.188.000 NaN
18 001.202.096.052 NaN
19 001.204.179.141 China
20 002.051.000.165 NaN
21 002.056.000.000 NaN
22 002.095.041.202 NaN
23 002.135.237.106 Kazakhstan
24 002.135.237.250 Kazakhstan
... ... ...

时间:对于 171.884 个唯一 IP:

In [85]: %timeit unique_ips.apply(get_country)
1 loop, best of 3: 14.8 s per loop

In [86]: unique_ips.shape
Out[86]: (171884,)

结论:大约需要35 秒,你在我的硬件上拥有 40 万个唯一 IP:

In [93]: 400000/171884*15
Out[93]: 34.90726303786274

关于python - Pandas:将 IP 解析为国家/地区的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40211314/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com