- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个函数 find_country_from_connection_ip
,它接受一个 ip,经过一些处理后返回一个国家。如下所示:
def find_country_from_connection_ip(ip):
# Do some processing
return county
我正在使用 apply
方法中的函数。如下所示:
df['Country'] = df.apply(lambda x: find_country_from_ip(x['IP']), axis=1)
因为它非常简单,我想要的是从 DataFrame 中具有 >400000
行的现有列评估新列。
它运行,但非常慢并抛出如下异常:
...........: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
if name == 'main': In [38]:
我理解这个问题,但不太明白如何将 loc
与 apply
和 lambda
一起使用。
注意请建议您是否有更有效的替代解决方案,可以带来最终结果。
**** 编辑 ********
该函数主要是在mmdb
数据库中查找,如下所示:
def find_country_from_ip(ip):
result = subprocess.Popen("mmdblookup --file GeoIP2-Country.mmdb --ip {} country names en".format(ip).split(" "), stdout=subprocess.PIPE).stdout.read()
if result:
return re.search(r'\"(.+?)\"', result).group(1)
else:
final_output = subprocess.Popen("mmdblookup --file GeoIP2-Country.mmdb --ip {} registered_country names en".format(ip).split(" "), stdout=subprocess.PIPE).stdout.read()
return re.search(r'\"(.+?)\"', final_output).group(1)
尽管如此,这是一项代价高昂的操作,当您有一个包含 >400000
行的 DataFrame 时,这应该需要一些时间。但是多少钱?就是那个问题。大约需要 2 小时,我认为差不多。
最佳答案
我会为此使用 maxminddb-geolite2
(GeoLite) 模块。
首先安装maxminddb-geolite2
模块
pip install maxminddb-geolite2
Python 代码:
import pandas as pd
from geolite2 import geolite2
def get_country(ip):
try:
x = geo.get(ip)
except ValueError:
return pd.np.nan
try:
return x['country']['names']['en'] if x else pd.np.nan
except KeyError:
return pd.np.nan
geo = geolite2.reader()
# it took me quite some time to find a free and large enough list of IPs ;)
# IP's for testing: http://upd.emule-security.org/ipfilter.zip
x = pd.read_csv(r'D:\download\ipfilter.zip',
usecols=[0], sep='\s*\-\s*',
header=None, names=['ip'])
# get unique IPs
unique_ips = x['ip'].unique()
# make series out of it
unique_ips = pd.Series(unique_ips, index = unique_ips)
# map IP --> country
x['country'] = x['ip'].map(unique_ips.apply(get_country))
geolite2.close()
输出:
In [90]: x
Out[90]:
ip country
0 000.000.000.000 NaN
1 001.002.004.000 NaN
2 001.002.008.000 NaN
3 001.009.096.105 NaN
4 001.009.102.251 NaN
5 001.009.106.186 NaN
6 001.016.000.000 NaN
7 001.055.241.140 NaN
8 001.093.021.147 NaN
9 001.179.136.040 NaN
10 001.179.138.224 Thailand
11 001.179.140.200 Thailand
12 001.179.146.052 NaN
13 001.179.147.002 Thailand
14 001.179.153.216 Thailand
15 001.179.164.124 Thailand
16 001.179.167.188 Thailand
17 001.186.188.000 NaN
18 001.202.096.052 NaN
19 001.204.179.141 China
20 002.051.000.165 NaN
21 002.056.000.000 NaN
22 002.095.041.202 NaN
23 002.135.237.106 Kazakhstan
24 002.135.237.250 Kazakhstan
... ... ...
时间:对于 171.884 个唯一 IP:
In [85]: %timeit unique_ips.apply(get_country)
1 loop, best of 3: 14.8 s per loop
In [86]: unique_ips.shape
Out[86]: (171884,)
结论:大约需要35 秒,你在我的硬件上拥有 40 万个唯一 IP:
In [93]: 400000/171884*15
Out[93]: 34.90726303786274
关于python - Pandas:将 IP 解析为国家/地区的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40211314/
什么是更快的安卓? Color.rgb(184, 134, 011); 或 Color.parseColor("#234181"); 还是别的什么? 答案:最快的似乎是: int mycolor =
没错, 基本上我需要计算出从服务器到最终用户的最短路线。我有 2 台服务器 - 一台在英国,一台在美国。 我需要根据最终用户的位置确定从哪个服务器加载内容。 我最初想使用 fsock/curl/fgc
我正在阅读固定宽度整数类型 ( cpp reference) 并遇到int_fast8_t、int_fast16_t、int_fast32_t 和 int_least8_t 类型,int_least1
Closed. This question is opinion-based。它当前不接受答案。 想改善这个问题吗?更新问题,以便editing this post用事实和引用来回答。 6年前关闭。
我有大量目录,我想尽快读取所有文件。我的意思是,不是 DirectoryInfo.GetFiles 快,而是“get-clusters-from-disk-low-level”快。 当然,.NET 2
我尝试寻找最小的可被1到n整除的数字,现在我正在寻求有关进一步压缩/使我的解决方案更有效的方法的建议。如果也有O(1)解决方案,那将非常酷。 def get_smallest_number(n):
有很多不同的方法可以在驱动程序之间选择元素。我想知道哪一个最快且最适合 native 应用程序(iOS 和 Android)。 Appium Driver 类有: findElementByAcces
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,
让矩阵 A 说 A = magic(100);。我见过两种计算矩阵 A 的所有元素之和的方法。 sumOfA = sum(sum(A)); 或者 sumOfA = sum(A(:)); 其中一个比另一
我想为玩具车在没有障碍物的平面 (2d) 上规划一条路线。玩具车应该从点 (p1x,p1y) 移动到 (p2x,p2y)(又名狄利克雷边界条件)。此外,玩具车在起点的速度是(v1x,v1y),终点处要
假设有 n 个 3 维对象(多面体)。最快的方法是计算所有对象的交集O(n^2)? 现在,我正在使用一个基本上强制 T(n) 等于 n ^ 2 的库: for each object: // ther
关闭。这个问题需要 details or clarity 。它目前不接受答案。 想改进这个问题吗? 添加细节并通过 editing this post 澄清问题。 关闭 5 年前。 Improve
在 c: 上,我有数以万计的 *.foobar 文件。它们在各种各样的地方(即子目录)。这些文件的大小大约为 1 - 64 kb,并且是纯文本。 我有一个 class Foobar(string fi
我的基本问题是有多个线程做一些事情,其中一些需要比其他线程更多的时间(20 倍甚至更多),他们需要的时间只取决于起始值,但不能从起始值预测单独他们需要多少时间。为了减少更快线程的空闲时间,我想通过
好的,我有一个疑问: select distinct(a) from mytable where b in (0,3) 什么会更快,上面的还是 select distinct(a) from myta
问题简介: 我正在开发一个生态生理模型,我使用了一个名为 S 的引用类列表。存储模型需要输入/输出的每个对象(例如气象、生理参数等)。 此列表包含 5 个对象(请参见下面的示例): - 两个数据帧,S
我有一个正在工作的问题陈述,但我仍然想知道更高效、更快,更重要的是正确设计来处理下面提到的场景。 我有一个 POJO 类 class A { String s; Double d; } 我正在
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 3 年前。 Improve this q
关于 LLVM 如何优化代码,关于 SO 以及整个网络都有一些非常好的描述。但这些都无法回答我的具体问题。 在 Xcode 中,项目和目标设置中有各种代码优化选项。我理解在开发过程中不需要优化,但为什
我正在用 C# 开发一个服务器项目,在收到 TCP 消息后,它会被解析并存储在一个精确大小的 byte[] 中。 (不是固定长度的缓冲区,而是存储所有数据的绝对长度的字节[]。) 现在为了阅读这个 b
我是一名优秀的程序员,十分优秀!