- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在计算 int8
向量中出现频率最高的数字。当我设置 int
s 的计数器数组时,Numba 提示:
@jit(nopython=True)
def freq_int8(y):
"""Find most frequent number in array"""
count = np.zeros(256, dtype=int)
for val in y:
count[val] += 1
return ((np.argmax(count)+128) % 256) - 128
调用它时出现以下错误:
TypingError: Invalid usage of Function(<built-in function zeros>) with parameters (int64, Function(<class 'int'>))
如果我删除 dtype=int
它会起作用并且我得到了不错的加速。然而,我对为什么声明 int
数组不起作用感到困惑。是否有已知的解决方法,是否有任何值得在这里获得的效率提升?
背景:我正在尝试将一些 numpy-heavy 代码缩短几微秒。我尤其受到 numpy.median
的伤害,并且一直在研究 Numba,但正在努力改进 median
。查找最频繁的数字是 median
的可接受替代方法,在这里我已经能够获得一些性能。上面的 numba 代码也比 numpy.bincount
更快。
更新:输入已接受的答案后,这里是int8
向量的median
的实现。它大约比 numpy.median
快一个数量级:
@jit(nopython=True)
def median_int8(y):
N2 = len(y)//2
count = np.zeros(256, dtype=np.int32)
for val in y:
count[val] += 1
cs = 0
for i in range(-128, 128):
cs += count[i]
if cs > N2:
return float(i)
elif cs == N2:
j = i+1
while count[j] == 0:
j += 1
return (i + j)/2
令人惊讶的是,短向量的性能差异甚至更大,这显然是由于 numpy
向量的开销:
>>> a = np.random.randint(-128, 128, 10)
>>> %timeit np.median(a)
The slowest run took 7.03 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 20.8 µs per loop
>>> %timeit median_int8(a)
The slowest run took 11.67 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 593 ns per loop
这个开销太大了,我在想是不是哪里出了问题。
最佳答案
快速说明一下,查找出现次数最多的数字通常称为 mode ,它与 median 和 mean 一样相似...在这种情况下,np.mean
会快得多。除非您的数据有一些限制或特殊性,there is no guarantee that the mode approximates the median .
如果您仍想计算整数列表的众数,np.bincount
,正如你提到的,应该足够了(如果 numba 更快,它不应该太多):
count = np.bincount(y, minlength=256)
result = ((np.argmax(count)+128) % 256) - 128
请注意,我已将 minlength
参数添加到 np.bincount
中,以便它返回与代码中相同的 256 长度列表。但在实践中完全没有必要,因为您只需要 argmax
,np.bincount
(没有 minlength
)将返回一个长度为y
中的最大数。
至于 numba 错误,将 dtype=int
替换为 dtype=np.int32
应该可以解决问题。 int
是一个 python 函数,您在 numba header 中指定 nopython
。如果您删除 nopython
,则 dtype=int
或 dtype='i'
也将起作用(具有相同的效果)。
关于python - numba 中的整数数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37297305/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!