- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在用 Python 开发一个使用 Tensorflow 的应用程序和另一个使用 GPU 的模型。我有一台带有许多 GPU 的 PC (3xNVIDIA GTX1080),由于所有模型都尝试使用所有可用的 GPU,导致 OUT_OF_MEMORY_ERROR,我发现您可以将特定的 GPU 分配给 Python 脚本
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
在这里我附上了我的 FCN 类的片段
class FCN:
def __init__(self):
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
self.keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
self.image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
self.annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
self.pred_annotation, logits = inference(self.image, self.keep_probability)
tf.summary.image("input_image", self.image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(self.annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(self.pred_annotation, tf.uint8), max_outputs=2)
self.loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=tf.squeeze(self.annotation,
squeeze_dims=[3]),
name="entropy")))
tf.summary.scalar("entropy", self.loss)
...
在同一个文件 FCN.py
中,我有一个使用该类的小 main,当 Tensorflow 打印输出时,我可以看到只使用了 1 个 GPU,正如我预期的那样。
if __name__ == "__main__":
fcn = FCN()
fcn.train_model()
images_dir = '/home/super/datasets/MeterDataset/full-dataset-gas-images/'
for img_file in os.listdir(images_dir):
fcn.segment(os.path.join(images_dir, img_file))
输出:
2018-01-09 11:31:57.351029: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:09:00.0
Total memory: 7.92GiB
Free memory: 7.60GiB
2018-01-09 11:31:57.351047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0
2018-01-09 11:31:57.351051: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y
2018-01-09 11:31:57.351057: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:09:00.0)
当我尝试从另一个脚本实例化 FCN 对象时出现问题。
def main(args):
start_time = datetime.now()
font = cv2.FONT_HERSHEY_SIMPLEX
results_file = "../results.txt"
if os.path.exists(results_file):
os.remove(results_file)
results_file = open(results_file, "a")
fcn = FCN()
这里对象的创建总是使用所有 3 个 GPU,而不是使用唯一分配给 __init__()
方法的 GPU。
这里是不需要的输出:
2018-01-09 11:41:02.537548: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 1 2
2018-01-09 11:41:02.537555: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y Y Y
2018-01-09 11:41:02.537558: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 1: Y Y Y
2018-01-09 11:41:02.537561: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 2: Y Y Y
2018-01-09 11:41:02.537567: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:0b:00.0)
2018-01-09 11:41:02.537571: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080, pci bus id: 0000:09:00.0)
2018-01-09 11:41:02.537574: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:2) -> (device: 2, name: GeForce GTX 1080, pci bus id: 0000:05:00.0)
最佳答案
以下是您可以执行的操作:
使用已设置的 CUDA_VISIBLE_DEVICES
环境变量运行脚本,如 discussed here :
CUDA_VISIBLE_DEVICES=1 python another_script.py
为Session
构造函数提供显式配置:
config = tf.ConfigProto(device_count={'GPU': 1})
sess = tf.Session(config=config)
... 强制 tensorflow 只使用一个 GPU,无论有多少可用。您还可以通过 visible_device_list
设置细粒度的设备列表(有关详细信息,请参阅 config.proto
)。
关于python - 在 Tensorflow 中限制 GPU 设备,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48166440/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!