- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有以下 numpy 数组:
arr_1 = [[1,2],[3,4],[5,6]] # 3 X 2
arr_2 = [[0.5,0.6],[0.7,0.8],[0.9,1.0],[1.1,1.2],[1.3,1.4]] # 5 X 2
arr_1
显然是一个 3 X 2
数组,而 arr_2
是一个 5 X 2
数组。
现在没有循环,我想按元素乘以 arr_1 和 arr_2,以便我将滑动窗口技术(窗口大小 3)应用于 arr_2。
Example:
Multiplication 1: np.multiply(arr_1,arr_2[:3,:])
Multiplication 2: np.multiply(arr_1,arr_2[1:4,:])
Multiplication 3: np.multiply(arr_1,arr_2[2:5,:])
我想以某种矩阵乘法形式执行此操作,以使其比我当前的解决方案更快:
for i in (2):
np.multiply(arr_1,arr_2[i:i+3,:])
因此,如果 arr_2 中的行数很大(数量级为数万),则此解决方案的扩展性并不是很好。
如有任何帮助,我们将不胜感激。
最佳答案
我们可以使用NumPy broadcasting
以矢量化方式创建那些滑动窗口索引。然后,我们可以简单地索引到 arr_2
中以创建 3D
数组,并与 2D
数组 arr_1< 执行逐元素乘法
,这又会再次打开广播
。
所以,我们会有一个像这样的矢量化实现 -
W = arr_1.shape[0] # Window size
idx = np.arange(arr_2.shape[0]-W+1)[:,None] + np.arange(W)
out = arr_1*arr_2[idx]
运行时测试和验证结果-
In [143]: # Input arrays
...: arr_1 = np.random.rand(3,2)
...: arr_2 = np.random.rand(10000,2)
...:
...: def org_app(arr_1,arr_2):
...: W = arr_1.shape[0] # Window size
...: L = arr_2.shape[0]-W+1
...: out = np.empty((L,W,arr_1.shape[1]))
...: for i in range(L):
...: out[i] = np.multiply(arr_1,arr_2[i:i+W,:])
...: return out
...:
...: def vectorized_app(arr_1,arr_2):
...: W = arr_1.shape[0] # Window size
...: idx = np.arange(arr_2.shape[0]-W+1)[:,None] + np.arange(W)
...: return arr_1*arr_2[idx]
...:
In [144]: np.allclose(org_app(arr_1,arr_2),vectorized_app(arr_1,arr_2))
Out[144]: True
In [145]: %timeit org_app(arr_1,arr_2)
10 loops, best of 3: 47.3 ms per loop
In [146]: %timeit vectorized_app(arr_1,arr_2)
1000 loops, best of 3: 1.21 ms per loop
关于python - 滑动窗口操作的 Numpy 向量化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39232790/
我想使用Tensorflow的transform_graph工具优化图形。我尝试优化 MultiNet 中的图表(以及其他具有类似编码器-解码器架构的)。然而,优化后的图在使用 quantize_we
我试图在 C# 中将图像量化为 10 种颜色,但在绘制量化图像时遇到问题,我已经制作了映射表并且它是正确的,我已经制作了原始图像的副本并且正在更改基于映射表的像素颜色,我使用下面的代码: bm = n
我需要降低UIImage的颜色深度,但是我不知道该怎么做。结果应与在Photoshop中应用索引颜色相同。 我的目标是要具有较低的色深(32色或更低)。也许这是我的错,但我没有找到解决方法。令人惊讶的
我有大量的 numpy 向量,每个形状 (3,) 都有 8 位整数值: vec = np.random.randint(2**8, size=3) 我想通过一些已知的缩减因子将这些向量量化到更小的空间
我正在用 jQuery 编写一个心理学应用程序。我的项目的一部分需要测量用户对声音的 react 时间(用户按下一个键)。因此,我需要在调用(&时间戳)声音文件和实际开始播放之间的延迟尽可能小地播放声
最近,我开始使用 Tensorflow + Keras 创建神经网络,我想尝试 Tensorflow 中提供的量化功能。到目前为止,使用 TF 教程中的示例进行试验效果很好,我有这个基本的工作示例(来
使用当前的 Tensorflow quantization ops ,我将如何在推理过程中模拟每 channel 量化?这paper将每层量化定义为 We can specify a single q
我已经卡住了我的模型并获得了 .pb 文件。然后我在 Linux 上使用 tocoConverter 量化我的模型,因为 Windows 不支持它。我有 quantized_model.tflite。
我将 git 用于一个稍微不寻常的目的——它在我写小说时存储我的文本。 (我知道,我知道......令人讨厌。) 我正在尝试跟踪生产力,并想衡量后续提交之间的差异程度。作家代表“作品”的是“文字”,至
quantization有什么区别和 simplification ? 量化是另一种简化方式吗? 在某些情况下使用量化更好吗? 或者我应该同时使用两者? 最佳答案 几何体的总大小由两个因素控制:点数和
扎克伯格说,Llama3-8B还是太大了,不适合放到手机中,有什么办法? 量化、剪枝、蒸馏,如果你经常关注大语言模型,一定会看到这几个词,单看这几个字,我们很难理解它们都干了些什么,但
相对于
我正在将一些我无法控制的 XML 转换为 XHTML。 XML 模式定义了一个 段落标记和 和 用于列表。 我经常在这个 XML 中找到嵌套在段落中的列表。因此,直接转换会导致 s 嵌套在 中s,
我看到过这样的说法:CNN 的更深层次可以学习识别更复杂的特征。这通常附带一张早期过滤器识别直线/简单曲线的图片,以及后期过滤器识别更复杂图案的图片。它具有直观意义:您距离数据越远,您对数据的理解就越
在使用 C++ 的带有 tensorflow lite 的树莓派上,对象检测无法正常工作。我的代码编译并运行,但输出似乎从未得到正确填充。我是否会遗漏任何依赖项或错误地访问结果? 我遵循了以下教程:
如何衡量/量化 Corona SDK 游戏应用中的“迟缓”? 我在我构建的基于 Corona SDK 的物理游戏(使用 Box2D)上寻找旧手机(例如 iPhone 4、Samsung GT-I900
我正在尝试创建一个 Tensorflow 量化模型,以便使用 Coral USB 加速器进行推理。这是我的问题的一个最小的独立示例: import sys import tensorflow as t
我有一个分位数回归模型,其中包含 1 个回归变量和 1 个回归变量。我想假设检验回归量在每个分位数上都相等。我想到的一种方法是在 {0.01,0.02,....,0.99} 上测试所有 tau。但是,
要求做,在 PGM 文件上使用 KMeans 进行 vector 量化(或图像压缩) 图像是 PMG 文件,其中 b = block 大小,k = 次数,t = 迭代,-g = 初始质心 图像是这样的
我是一名优秀的程序员,十分优秀!