gpt4 book ai didi

python - Spark Dataframe 是否具有与 Panda 的合并指示器等效的选项?

转载 作者:太空狗 更新时间:2023-10-30 02:02:47 27 4
gpt4 key购买 nike

python Pandas 库包含以下函数:

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False,
right_index=False, sort=False, suffixes=('_x', '_y'), copy=True,
indicator=False)

指标字段与 Panda 的 value_counts() 函数相结合可用于快速确定联接的执行情况。

例子:

In [48]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})

In [49]: df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})

In [50]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[50]:
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only

检查 Spark Dataframe 中连接性能的最佳方法是什么?

在其中一个答案中提供了一个自定义函数:它还没有给出正确的结果,但如果可以的话那就太好了:

ASchema = StructType([StructField('id', IntegerType(),nullable=False),
StructField('name', StringType(),nullable=False)])
BSchema = StructType([StructField('id', IntegerType(),nullable=False),
StructField('role', StringType(),nullable=False)])
AData = sc.parallelize ([ Row(1,'michel'), Row(2,'diederik'), Row(3,'rok'), Row(4,'piet')])
BData = sc.parallelize ([ Row(1,'engineer'), Row(2,'lead'), Row(3,'scientist'), Row(5,'manager')])
ADF = hc.createDataFrame(AData,ASchema)
BDF = hc.createDataFrame(BData,BSchema)
DFJOIN = ADF.join(BDF, ADF['id'] == BDF['id'], "outer")
DFJOIN.show()

Input:
+----+--------+----+---------+
| id| name| id| role|
+----+--------+----+---------+
| 1| michel| 1| engineer|
| 2|diederik| 2| lead|
| 3| rok| 3|scientist|
| 4| piet|null| null|
|null| null| 5| manager|
+----+--------+----+---------+

from pyspark.sql.functions import *
DFJOINMERGE = DFJOIN.withColumn("_merge", when(ADF["id"].isNull(), "right_only").when(BDF["id"].isNull(), "left_only").otherwise("both"))\
.withColumn("id", coalesce(ADF["id"], BDF["id"]))\
.drop(ADF["id"])\
.drop(BDF["id"])
DFJOINMERGE.show()

Output
+---+--------+---+---------+------+
| id| name| id| role|_merge|
+---+--------+---+---------+------+
| 1| michel| 1| engineer| both|
| 2|diederik| 2| lead| both|
| 3| rok| 3|scientist| both|
| 4| piet| 4| null| both|
| 5| null| 5| manager| both|
+---+--------+---+---------+------+

==> I would expect id 4 to be left, and id 5 to be right.

Changing join to "left":


Input:
+---+--------+----+---------+
| id| name| id| role|
+---+--------+----+---------+
| 1| michel| 1| engineer|
| 2|diederik| 2| lead|
| 3| rok| 3|scientist|
| 4| piet|null| null|
+---+--------+----+---------+

Output
+---+--------+---+---------+------+
| id| name| id| role|_merge|
+---+--------+---+---------+------+
| 1| michel| 1| engineer| both|
| 2|diederik| 2| lead| both|
| 3| rok| 3|scientist| both|
| 4| piet| 4| null| both|
+---+--------+---+---------+------+

最佳答案

试试这个:

>>> from pyspark.sql.functions import *
>>> sdf1 = sqlContext.createDataFrame(df1)
>>> sdf2 = sqlContext.createDataFrame(df2)
>>> sdf = sdf1.join(sdf2, sdf1["col1"] == sdf2["col1"], "outer")
>>> sdf.withColumn("_merge", when(sdf1["col1"].isNull(), "right_only").when(sdf2["col1"].isNull(), "left_only").otherwise("both"))\
... .withColumn("col1", coalesce(sdf1["col1"], sdf2["col1"]))\
... .drop(sdf1["col1"])\
... .drop(sdf2["col1"])

关于python - Spark Dataframe 是否具有与 Panda 的合并指示器等效的选项?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38721194/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com