- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
python Pandas 库包含以下函数:
DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False,
right_index=False, sort=False, suffixes=('_x', '_y'), copy=True,
indicator=False)
指标字段与 Panda 的 value_counts() 函数相结合可用于快速确定联接的执行情况。
例子:
In [48]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})
In [49]: df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})
In [50]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[50]:
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
检查 Spark Dataframe 中连接性能的最佳方法是什么?
在其中一个答案中提供了一个自定义函数:它还没有给出正确的结果,但如果可以的话那就太好了:
ASchema = StructType([StructField('id', IntegerType(),nullable=False),
StructField('name', StringType(),nullable=False)])
BSchema = StructType([StructField('id', IntegerType(),nullable=False),
StructField('role', StringType(),nullable=False)])
AData = sc.parallelize ([ Row(1,'michel'), Row(2,'diederik'), Row(3,'rok'), Row(4,'piet')])
BData = sc.parallelize ([ Row(1,'engineer'), Row(2,'lead'), Row(3,'scientist'), Row(5,'manager')])
ADF = hc.createDataFrame(AData,ASchema)
BDF = hc.createDataFrame(BData,BSchema)
DFJOIN = ADF.join(BDF, ADF['id'] == BDF['id'], "outer")
DFJOIN.show()
Input:
+----+--------+----+---------+
| id| name| id| role|
+----+--------+----+---------+
| 1| michel| 1| engineer|
| 2|diederik| 2| lead|
| 3| rok| 3|scientist|
| 4| piet|null| null|
|null| null| 5| manager|
+----+--------+----+---------+
from pyspark.sql.functions import *
DFJOINMERGE = DFJOIN.withColumn("_merge", when(ADF["id"].isNull(), "right_only").when(BDF["id"].isNull(), "left_only").otherwise("both"))\
.withColumn("id", coalesce(ADF["id"], BDF["id"]))\
.drop(ADF["id"])\
.drop(BDF["id"])
DFJOINMERGE.show()
Output
+---+--------+---+---------+------+
| id| name| id| role|_merge|
+---+--------+---+---------+------+
| 1| michel| 1| engineer| both|
| 2|diederik| 2| lead| both|
| 3| rok| 3|scientist| both|
| 4| piet| 4| null| both|
| 5| null| 5| manager| both|
+---+--------+---+---------+------+
==> I would expect id 4 to be left, and id 5 to be right.
Changing join to "left":
Input:
+---+--------+----+---------+
| id| name| id| role|
+---+--------+----+---------+
| 1| michel| 1| engineer|
| 2|diederik| 2| lead|
| 3| rok| 3|scientist|
| 4| piet|null| null|
+---+--------+----+---------+
Output
+---+--------+---+---------+------+
| id| name| id| role|_merge|
+---+--------+---+---------+------+
| 1| michel| 1| engineer| both|
| 2|diederik| 2| lead| both|
| 3| rok| 3|scientist| both|
| 4| piet| 4| null| both|
+---+--------+---+---------+------+
最佳答案
试试这个:
>>> from pyspark.sql.functions import *
>>> sdf1 = sqlContext.createDataFrame(df1)
>>> sdf2 = sqlContext.createDataFrame(df2)
>>> sdf = sdf1.join(sdf2, sdf1["col1"] == sdf2["col1"], "outer")
>>> sdf.withColumn("_merge", when(sdf1["col1"].isNull(), "right_only").when(sdf2["col1"].isNull(), "left_only").otherwise("both"))\
... .withColumn("col1", coalesce(sdf1["col1"], sdf2["col1"]))\
... .drop(sdf1["col1"])\
... .drop(sdf2["col1"])
关于python - Spark Dataframe 是否具有与 Panda 的合并指示器等效的选项?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38721194/
我有几个长度不等的 vector ,我想对其进行cbind。我将 vector 放入列表中,并尝试结合使用do.call(cbind, ...): nm <- list(1:8, 3:8, 1:5)
合并(合并)两个 JSONObjects 的最佳方式是什么? JSONObject o1 = { "one": "1", "two": "2", "three": "3" }
我在一个表中有许多空间实体,其中有一个名为 Boundaries 的 geometry 字段。我想生成一个具有简化形状/几何图形的 GeoJson 文件。 这是我的第一次尝试: var entitie
谁能说出为什么这个选择返回 3.0 而不是 3.5: SELECT coalesce(1.0*(7/2),0) as foo 这个返回 3: SELECT coalesce(7/2,0) as foo
首先抱歉,也许这个问题已经提出,但我找不到任何可以帮助我的东西,可能是因为我对 XSLT 缺乏了解。 我有以下 XML: 0 OK
有时用户会使用 Windows 资源管理器复制文件并在他们应该执行 svn 存储库级别的复制或合并时提交它们。因此,SVN 没有正确跟踪这些变化。一旦我发现这一点,损坏显然已经完成,并且可能已经对相关
我想组合/堆叠 2 个不同列的值并获得唯一值。 如果范围相邻,则可以正常工作。例如: =UNIQUE(FILTERXML(""&SUBSTITUTE(TEXTJOIN(",",TRUE,TRANSPO
使用iTextSharp,如何将多个PDF合并为一个PDF,而又不丢失每个PDF中的“表单字段”及其属性? (我希望有一个使用来自数据库的流的示例,但文件系统也可以) 我发现this code可以正常
是否有一个合并函数可以优先考虑公共(public)变量中的非缺失值? 考虑以下示例。 首先,我们生成两个 data.frames,它们具有相同的 ID,但在特定变量上有互补的缺失值: set.seed
我们正在尝试实现 ALM Rangers 在最新的 Visual Studio TFS Branching and Merging Guide 中描述的“基本双分支计划”。 .从指导: The bas
我在不同目录(3个不同名称)中有很多(3个只是一个例子)文本文件,如下所示: 目录:A,文件名:run.txt 格式:txt制表符分隔 ; file one 10 0.2 0.5 0.
我有一张包含学生等级关系的表: Student Grade StartDate EndDate 1 1 09/01/2009 NULL 2
我在学习 https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/working-with-associatio
我觉得我有世界上最简单的 SVN 用例: 我有一个文件,Test.java在 trunk SVN的。 我分行trunk至 dev-branch . 我搬家Test.java进入 com/mycompa
我有两个数据框,其中一些列名称相同,而另一些列名称不同。数据框看起来像这样: df1 ID hello world hockey soccer 1 1 NA NA
Elasticsearch 中是否缺少以扁平化形式(多个子/子aggs)返回结果的方法? 例如,当前我正在尝试获取所有产品类型及其状态(在线/离线)。 这就是我最终得到的: aggs [ { key:
如何合并如下所示的 map : Map1 = Map(1 -> Class1(1), 2 -> Class1(2)) Map2 = Map(2 -> Class2(1), 3 -> Class2(2)
我试图通过从netezza服务器导入数据来合并两个数据集。 以下是数据集,其数字为,ID为,字母为,名称为: 下表都是使用命令从netezza导入的: sqoop import --connect n
我有两个数组 $array1 = array('first', 'second', 'third', 'fourth'); $array2 = array('first', 'third', 'fou
我正在 SQL Server 中运行合并。在我的更新中,我只想在值发生更改时更新该行。有一个版本行在每次更新时都会递增。下面是一个例子: MERGE Employee as tgt USING (SE
我是一名优秀的程序员,十分优秀!