gpt4 book ai didi

python - 解决 n 皇后难题

转载 作者:太空狗 更新时间:2023-10-30 01:55:55 26 4
gpt4 key购买 nike

我刚刚解决了python中的nqueen问题。该解决方案输出将 n 个皇后放在 nXn 棋盘上的解决方案总数,但尝试使用 n=15 需要一个多小时才能得到答案。任何人都可以看一下代码并给我一些关于加速这个程序的提示......一个新手 python 程序员。

#!/usr/bin/env python2.7

##############################################################################
# a script to solve the n queen problem in which n queens are to be placed on
# an nxn chess board in a way that none of the n queens is in check by any other
#queen using backtracking'''
##############################################################################
import sys
import time
import array

solution_count = 0

def queen(current_row, num_row, solution_list):
if current_row == num_row:
global solution_count
solution_count = solution_count + 1
else:
current_row += 1
next_moves = gen_nextpos(current_row, solution_list, num_row + 1)
if next_moves:
for move in next_moves:
'''make a move on first legal move of next moves'''
solution_list[current_row] = move
queen(current_row, num_row, solution_list)
'''undo move made'''
solution_list[current_row] = 0
else:
return None

def gen_nextpos(a_row, solution_list, arr_size):
'''function that takes a chess row number, a list of partially completed
placements and the number of rows of the chessboard. It returns a list of
columns in the row which are not under attack from any previously placed
queen.
'''
cand_moves = []
'''check for each column of a_row which is not in check from a previously
placed queen'''
for column in range(1, arr_size):
under_attack = False
for row in range(1, a_row):
'''
solution_list holds the column index for each row of which a
queen has been placed and using the fact that the slope of
diagonals to which a previously placed queen can get to is 1 and
that the vertical positions to which a queen can get to have same
column index, a position is checked for any threating queen
'''
if (abs(a_row - row) == abs(column - solution_list[row])
or solution_list[row] == column):
under_attack = True
break
if not under_attack:
cand_moves.append(column)
return cand_moves

def main():
'''
main is the application which sets up the program for running. It takes an
integer input,N, from the user representing the size of the chessboard and
passes as input,0, N representing the chess board size and a solution list to
hold solutions as they are created.It outputs the number of ways N queens
can be placed on a board of size NxN.
'''
#board_size = [int(x) for x in sys.stdin.readline().split()]
board_size = [15]
board_size = board_size[0]
solution_list = array.array('i', [0]* (board_size + 1))
#solution_list = [0]* (board_size + 1)
queen(0, board_size, solution_list)
print(solution_count)


if __name__ == '__main__':
start_time = time.time()
main()
print(time.time()

最佳答案

N 皇后问题的回溯算法在最坏情况下是阶乘算法。所以对于 N=8, 8!在最坏的情况下检查解决方案的数量,N=9 使它成为 9!,等等。可以看出,可能的解决方案的数量增长非常大,非常快。如果您不相信我,只需使用计算器并开始将连续数字相乘,从 1 开始。让我知道计算器内存耗尽的速度。

幸运的是,并非必须检查所有可能的解决方案。不幸的是,正确解的数量仍然大致遵循阶乘增长模式。因此,算法的运行时间以阶乘速度增长。

由于您需要找到所有正确的解决方案,因此在加快程序速度方面确实无能为力。您已经很好地从搜索树中删除了不可能的分支。我认为没有其他任何事情会产生重大影响。这只是一个缓慢的算法。

关于python - 解决 n 皇后难题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/4818201/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com