- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我想将稀疏矩阵 A 与元素为 0、-1 或 1 的矩阵 B 相乘。为了降低矩阵乘法的复杂性,我可以忽略为 0 的项目,或者如果项目为 1 或 subs,则继续添加不乘法的列。如果它是-1。关于这个的讨论在这里:
Random projection algorithm pseudo code
现在我可以继续实现这个技巧了,但我想知道我是否使用 Numpy 的乘法函数会更快。
有谁知道他们是否为此类矩阵优化了矩阵乘法?或者你能建议一些东西来加快这个过程,因为我有一个矩阵 300000x1000。
最佳答案
你看过 scipy.sparse
了吗?在这里重新发明轮子是没有意义的。稀疏矩阵是一个相当标准的东西。
(在示例中,我使用了 300000x4
矩阵以便在乘法后更容易打印。不过,300000x1000
矩阵应该没有任何问题。这将比两个密集数组相乘要快得多,假设你有大多数 0
元素。)
import scipy.sparse
import numpy as np
# Make the result reproducible...
np.random.seed(1977)
def generate_random_sparse_array(nrows, ncols, numdense):
"""Generate a random sparse array with -1 or 1 in the non-zero portions"""
i = np.random.randint(0, nrows-1, numdense)
j = np.random.randint(0, ncols-1, numdense)
data = np.random.random(numdense)
data[data <= 0.5] = -1
data[data > 0.5] = 1
ij = np.vstack((i,j))
return scipy.sparse.coo_matrix((data, ij), shape=(nrows, ncols))
A = generate_random_sparse_array(4, 300000, 1000)
B = generate_random_sparse_array(300000, 5, 1000)
C = A * B
print C.todense()
这会产生:
[[ 0. 1. 0. 0. 0.]
[ 0. 2. -1. 0. 0.]
[ 1. -1. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
关于python - Python 中稀疏矩阵的矩阵乘法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/7477733/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!