- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有以下名为 ttm 的数据框:
usersidid clienthostid eventSumTotal LoginDaysSum score
0 12 1 60 3 1728
1 11 1 240 3 1331
3 5 1 5 3 125
4 6 1 16 2 216
2 10 3 270 3 1000
5 8 3 18 2 512
当我做
ttm.groupby(['clienthostid'], as_index=False, sort=False)['LoginDaysSum'].count()
我得到了我期望的结果(尽管我希望结果位于名为“ratio”的新标签下):
clienthostid LoginDaysSum
0 1 4
1 3 2
但是当我这样做的时候
ttm.groupby(['clienthostid'], as_index=False, sort=False)['LoginDaysSum'].apply(lambda x: x.iloc[0] / x.iloc[1])
我得到:
0 1.0
1 1.5
谢谢,
最佳答案
返回DataFrame
在 groupby
之后有 2 种可能的解决方案:
参数as_index=False
什么适用于 count
, sum
, mean
功能
reset_index
用于从 index
的级别创建新列, 更通用的解决方案
df = ttm.groupby(['clienthostid'], as_index=False, sort=False)['LoginDaysSum'].count()
print (df)
clienthostid LoginDaysSum
0 1 4
1 3 2
df = ttm.groupby(['clienthostid'], sort=False)['LoginDaysSum'].count().reset_index()
print (df)
clienthostid LoginDaysSum
0 1 4
1 3 2
第二个需要删除as_index=False
而是添加 reset_index
:
#output is `Series`
a = ttm.groupby(['clienthostid'], sort=False)['LoginDaysSum'] \
.apply(lambda x: x.iloc[0] / x.iloc[1])
print (a)
clienthostid
1 1.0
3 1.5
Name: LoginDaysSum, dtype: float64
print (type(a))
<class 'pandas.core.series.Series'>
print (a.index)
Int64Index([1, 3], dtype='int64', name='clienthostid')
df1 = ttm.groupby(['clienthostid'], sort=False)['LoginDaysSum']
.apply(lambda x: x.iloc[0] / x.iloc[1]).reset_index(name='ratio')
print (df1)
clienthostid ratio
0 1 1.0
1 3 1.5
为什么有些列不见了?
我觉得可能有问题automatic exclusion of nuisance columns :
#convert column to str
ttm.usersidid = ttm.usersidid.astype(str) + 'aa'
print (ttm)
usersidid clienthostid eventSumTotal LoginDaysSum score
0 12aa 1 60 3 1728
1 11aa 1 240 3 1331
3 5aa 1 5 3 125
4 6aa 1 16 2 216
2 10aa 3 270 3 1000
5 8aa 3 18 2 512
#removed str column userid
a = ttm.groupby(['clienthostid'], sort=False).sum()
print (a)
eventSumTotal LoginDaysSum score
clienthostid
1 321 11 3400
3 288 5 1512
关于python - 在 Pandas 中,在 groupby 之后分组的列消失了,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41658498/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!