gpt4 book ai didi

python - GridSearchCV 的并行错误,适用于其他方法

转载 作者:太空狗 更新时间:2023-10-30 01:45:48 25 4
gpt4 key购买 nike

我在使用 GridSearchCV 时遇到以下问题:在使用 n_jobs > 1 时出现并行错误。同时,n_jobs > 1 适用于像 RadonmForestClassifier 这样的单一模型。

下面是一个显示错误的简单工作示例:

train = np.random.rand(100,10)
targ = np.random.randint(0,2,100)

clf = ensemble.RandomForestClassifier(n_jobs = 2)
clf.fit(train,targ)
train = np.random.rand(100,10)
targ = np.random.randint(0,2,100)

clf = ensemble.RandomForestClassifier(n_jobs = 2)
clf.fit(train,targ)
Out[349]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=2, oob_score=False, random_state=None,
verbose=0, warm_start=False)

这个例子工作正常。

同时以下内容不起作用:

clf = ensemble.RandomForestClassifier()
param_grid = {'n_estimators': [10,20]}
grid_s= model_selection.GridSearchCV(clf, param_grid=param_grid_gb,n_jobs=-1,verbose=1)
grid_s.fit(train, targ)

并给出以下错误:

Fitting 3 folds for each of 2 candidates, totalling 6 fits

ImportErrorTraceback (most recent call last)
<ipython-input-351-b8bb45396026> in <module>()
2 param_grid = {'n_estimators': [10,20]}
3 grid_s= model_selection.GridSearchCV(clf, param_grid=param_grid_gb,n_jobs=-1,verbose=1)
----> 4 grid_s.fit(train, targ)

/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in fit(self, X, y, groups)
943 train/test set.
944 """
--> 945 return self._fit(X, y, groups, ParameterGrid(self.param_grid))
946
947

/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in _fit(self, X, y, groups, parameter_iterable)
562 return_times=True, return_parameters=True,
563 error_score=self.error_score)
--> 564 for parameters in parameter_iterable
565 for train, test in cv_iter)
566

/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
726 self._aborting = False
727 if not self._managed_backend:
--> 728 n_jobs = self._initialize_backend()
729 else:
730 n_jobs = self._effective_n_jobs()

/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in _initialize_backend(self)
538 try:
539 return self._backend.configure(n_jobs=self.n_jobs, parallel=self,
--> 540 **self._backend_args)
541 except FallbackToBackend as e:
542 # Recursively initialize the backend in case of requested fallback.

/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in configure(self, n_jobs, parallel, **backend_args)
297 if already_forked:
298 raise ImportError(
--> 299 '[joblib] Attempting to do parallel computing '
300 'without protecting your import on a system that does '
301 'not support forking. To use parallel-computing in a '

ImportError: [joblib] Attempting to do parallel computing without protecting your import on a system that does not support forking. To use parallel-computing in a script, you must protect your main loop using "if __name__ == '__main__'". Please see the joblib documentation on Parallel for more information

最佳答案

我认为您使用的是 Windows。您需要将网格搜索包装在一个函数中,然后在 __name__ == '__main__' 内部调用。 Joblib parallel n_jobs=-1 确定要使用的并行作业的数量,这些作业并非始终在 Windows 上运行。

尝试将网格搜索包装在一个函数中:

def somefunction():
clf = ensemble.RandomForestClassifier()
param_grid = {'n_estimators': [10,20]}
grid_s= model_selection.GridSearchCV(clf, param_grid=param_grid_gb,n_jobs=-1,verbose=1)
grid_s.fit(train, targ)
return grid_s

if __name__ == '__main__':
somefunction()

或者:

if __name__ == '__main__':
clf = ensemble.RandomForestClassifier()
param_grid = {'n_estimators': [10,20]}
grid_s= model_selection.GridSearchCV(clf, param_grid=param_grid_gb,n_jobs=-1,verbose=1)
grid_s.fit(train, targ)

关于python - GridSearchCV 的并行错误,适用于其他方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40803684/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com