- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试对杜威十进制分类法进行一些图形分析,以便我可以在两本书之间划清界限。 DDC有几个关系:“hierarchy”,“see-also”,“class-elsewhere”,这里我用不同的颜色来表示。由于这些关系不是对称的,您会注意到我们有一个有向图。下图是距离 394.1 最多 4 条边的所有顶点的图形。
分类 A 和 B 之间的距离度量应该是 A 和 B 之间的最短路径。但是颜色没有固有的加权值或偏好。但是用户会给提供一个。所以给定一个权重字典,例如:
weights_dict_test = {'notational_hiearchy':1,
'see_reference':0.5,
'class_elsewhere':2}
我想返回加权最短路径。我认为如果我可以预处理两个节点之间的所有简单路径,然后找到给定权重指令的最短路径,那将不是问题。但是,由于该图包含 >50,000 个节点。计算 nx.all_simple_paths(G, a, b)
在计算 24 小时后仍未返回。是否有任何关于并行查找 all_simple_paths
的建议。还是在给定 weights_dict
的情况下计算最短路径的技术不涉及计算 all_simple_paths
?
最佳答案
感谢@CorleyBrigman。解决方案是从 G
创建一个新的图 W
,用你想要的权重替换 G
的颜色。然后,您可以高效地使用 nx.shortest_path
和 nx.shortest_path_length
,因为它们通常运行速度很快。
In [23]:
def update_weights(G, weights_dict):
W = nx.DiGraph()
for m in G.nodes():
for n in G[m].iterkeys():
relation = G[m][n]['rel']
weight = weights_dict[relation]
W.add_edge(m, n, rel=weights_dict[relation])
return W
In [41]:
weights_dict_test = {'notational_hiearchy':50,
'see_reference':0.6,
'class_elsewhere':1}
In [42]:
W = update_weights(G, weights_dict_test)
In [43]:
print len(W)
print len(G)
43241
43241
In [45]:
nx.shortest_path_length(W, '394.1', '341.33',weight='rel')
Out[45]:
52.2
关于python - 有效地枚举 networkx 中 DiGraph 的所有简单路径,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21414046/
我正在尝试对网络上的投票动态进行建模,并希望能够在 NetworkX 中创建一个图表,在其中我可以在节点上迭代投票过程,让它们的颜色变化对应于它们的投票“标签”。 我已设法获得此代码以查看每个节点的属
我无法计算简单 NetworkX 加权图的中心性。 这是正常的还是我做错了什么? 我使用简单的 add_edge(c[0],c[1],weight = my_values) 添加边,其中c[0],c[
我想在函数调用 d(n) 之前比较 networkx.Graph 对象 n 的状态(有副作用)之后与国家合作。 有一些可变的对象节点属性,例如 n.node[0]['attribute'],我想对其进
我正在使用 NetworkX 生成一些噪声数据的图表。我想通过删除虚假分支来“清理”图表,并希望避免重新发明轮子。 例如,链接的图片显示了一组示例图形,作为由灰线连接的彩色节点。我想修剪白框指示的节点
我目前正在尝试制定一种算法来在图中查找派系,幸运的是我从 Networkx 找到了一个函数的文档,该函数就是这样做的。不幸的是,变量名有点简洁,我很难理解代码的每一部分的作用。 这里是 find_cl
我正在尝试使用 NetworkX 在两个节点之间添加平行边,但由于以下错误而失败。我究竟做错了什么? import networkx as nx import graphviz g1 = nx.Mul
我希望将 Pajek 数据集转换为 networkx Graph()。数据集来自哥斯达黎加Family Ties 。我正在使用非常方便的 networkx.read_pajek(pathname) 函
我在networkx中有一个巨大的图,我想从每个节点获取深度为2的所有子图。有没有一种好的方法可以使用networkx中的内置函数来做到这一点? 最佳答案 正如我在评论中所说,networkx.ego
我希望将 Pajek 数据集转换为 networkx Graph()。数据集来自哥斯达黎加Family Ties 。我正在使用非常方便的 networkx.read_pajek(pathname) 函
我在使用以下代码时遇到问题。边连接节点。但是是否有可能有一个定向网络,如果一个“人”跟随一个“人”,但它只是一种方式,在边缘有箭头或方向。 plt.figure(figsize=(12, 12)) #
我正在 Windows 机器上使用 Python 3,尽管付出了很多努力,但仍未能安装 pygraphviz。单独讨论。 我有networkx和graphviz模块...是否有一个范例可以在netwo
我正在使用《Python 自然语言处理》一书(“www.nltk.org/book”)自学 Python 和 NLTK。 我在 NetworkX 上被困在第 4 章第 4 部分第 8 部分。当我尝试运
下面是我的代码: import networkx as nx for i in range(2): G = nx.DiGraph() if i==0: G.add_ed
我正在使用 deap 符号回归示例问题中的这段代码,图形显示正常,但我希望节点扩展为圆角矩形以适合文本 自动 . (我不想只是通过反复试验来指定节点大小)。我该怎么做? # show tree imp
我正在尝试使用 networkx 读取 gml 文件(很简单吧?),除非我尝试读取文件时出现错误“networkx.exception.NetworkXError: cannot tokenize u
如何按厚度在networkx中绘制N> 1000个节点的加权网络?如果我有一个源、目标节点和每个边的权重的 .csv 列表,我正在考虑使用该方法: for i in range(N) G.add_ed
我希望 networkx 在我的定向中找到绝对最长的路径, 无环图。 我知道 Bellman-Ford,所以我否定了我的图长度。问题: networkx 的 bellman_ford() 需要一个源节
我在图中有一个节点,它充当一种“临时连接器”节点。我想删除该节点并更新图中的边,以便其所有直接前辈都指向其直接后继者。 在 networkx 中是否有内置功能可以做到这一点,还是我需要推出自己的解决方
我有两张彩色图表。我想确定它们是否同构,条件是同构必须保留顶点颜色。 networkx 中是否有算法可以做到这一点? 这些图是无向且简单的。 最佳答案 检查documentation对于is_isom
我有一组起点-终点坐标,我想计算它们之间的最短路径。 我的起点-终点坐标有时位于一条长直线道路的中间。但是,OSMnx/networkx 计算的最短路径不会考虑中间边到最近节点的路径。 OSMnx 或
我是一名优秀的程序员,十分优秀!