gpt4 book ai didi

python - pure-python RNN 和 theano RNN 计算不同的梯度——提供的代码和结果

转载 作者:太空狗 更新时间:2023-10-30 01:38:03 27 4
gpt4 key购买 nike

一段时间以来,我一直在苦思冥想,无法弄清楚我在实现这些 RNN 时做错了什么(如果有的话)。为了让你们省去前向阶段,我可以告诉你们这两个实现计算相同的输出,所以前向阶段是正确的。问题出在倒退阶段。

这是我的 python 反向代码。它非常接近但不完全遵循 karpathy 的 neuraltalk 风格:

def backward(self, cache, target,c=leastsquares_cost, dc=leastsquares_dcost):
'''
cache is from forward pass

c is a cost function
dc is a function used as dc(output, target) which gives the gradient dc/doutput
'''
XdotW = cache['XdotW'] #num_time_steps x hidden_size
Hin = cache['Hin'] # num_time_steps x hidden_size
T = Hin.shape[0]
Hout = cache['Hout']
Xin = cache['Xin']
Xout = cache['Xout']

Oin = cache['Oin'] # num_time_steps x output_size
Oout=cache['Oout']

dcdOin = dc(Oout, target) # this will be num_time_steps x num_outputs. these are dc/dO_j


dcdWho = np.dot(Hout.transpose(), dcdOin) # this is the sum of outer products for all time

# bias term is added at the end with coefficient 1 hence the dot product is just the sum
dcdbho = np.sum(dcdOin, axis=0, keepdims=True) #this sums all the time steps

dcdHout = np.dot(dcdOin, self.Who.transpose()) #reflects dcdHout_ij should be the dot product of dcdoin and the i'th row of Who; this is only for the outputs
# now go back in time
dcdHin = np.zeros(dcdHout.shape)
# for t=T we can ignore the other term (error from the next timestep). self.df is derivative of activation function (here, tanh):
dcdHin[T-1] = self.df(Hin[T-1]) * dcdHout[T-1] # because we don't need to worry about the next timestep, dcdHout is already corrent for t=T

for t in reversed(xrange(T-1)):
# we need to add to dcdHout[t] the error from the next timestep
dcdHout[t] += np.dot(dcdHin[t], self.Whh.transpose())
# now we have the correct form for dcdHout[t]
dcdHin[t] = self.df(Hin[t]) * dcdHout[t]
# now we've gone through all t, and we can continue
dcdWhh = np.zeros(self.Whh.shape)
for t in range(T-1): #skip T bc dHdin[T+1] doesn't exist
dcdWhh += np.outer(Hout[t], dcdHin[t+1])
# and we can do bias as well
dcdbhh = np.sum(dcdHin,axis=0, keepdims=True)


# now we need to go back to the embeddings
dcdWxh = np.dot(Xout.transpose(), dcdHin)

return {'dcdOout': dcdOout, 'dcdWxh': dcdWxh, 'dcdWhh': dcdWhh, 'dcdWho': dcdWho, 'dcdbhh': dcdbhh, 'dcdbho': dcdbho, 'cost':c(Oout, target)}

这里是 theano 代码(主要是从我在网上找到的另一个实现复制的。我将权重初始化为我的纯 python rnn 的随机权重,以便一切都相同。):

# input (where first dimension is time)
u = TT.matrix()
# target (where first dimension is time)
t = TT.matrix()
# initial hidden state of the RNN
h0 = TT.vector()
# learning rate
lr = TT.scalar()
# recurrent weights as a shared variable
W = theano.shared(rnn.Whh)
# input to hidden layer weights
W_in = theano.shared(rnn.Wxh)
# hidden to output layer weights
W_out = theano.shared(rnn.Who)

# bias 1
b_h = theano.shared(rnn.bhh[0])
# bias 2
b_o = theano.shared(rnn.bho[0])


# recurrent function (using tanh activation function) and linear output
# activation function
def step(u_t, h_tm1, W, W_in, W_out):
h_t = TT.tanh(TT.dot(u_t, W_in) + TT.dot(h_tm1, W) + b_h)
y_t = TT.dot(h_t, W_out) + b_o
return h_t, y_t

# the hidden state `h` for the entire sequence, and the output for the
# entrie sequence `y` (first dimension is always time)
[h, y], _ = theano.scan(step,
sequences=u,
outputs_info=[h0, None],
non_sequences=[W, W_in, W_out])
# error between output and target
error = (.5*(y - t) ** 2).sum()
# gradients on the weights using BPTT
gW, gW_in, gW_out, gb_h, gb_o = TT.grad(error, [W, W_in, W_out, b_h, b_o])
# training function, that computes the error and updates the weights using
# SGD.

现在这是疯狂的事情。如果我运行以下命令:

fn = theano.function([h0, u, t, lr],
[error, y, h, gW, gW_in, gW_out, gb_h, gb_o],
updates={W: W - lr * gW,
W_in: W_in - lr * gW_in,
W_out: W_out - lr * gW_out})

er, yout, hout, gWhh, gWhx, gWho, gbh, gbo =fn(numpy.zeros((n,)), numpy.eye(5), numpy.eye(5),.01)
cache = rnn.forward(np.eye(5))
bc = rnn.backward(cache, np.eye(5))

print "sum difference between gWho (theano) and bc['dcdWho'] (pure python):"
print np.sum(gWho - bc['dcdWho'])
print "sum differnce between gWhh(theano) and bc['dcdWho'] (pure python):"
print np.sum(gWhh - bc['dcdWhh'])
print "sum difference between gWhx (theano) and bc['dcdWxh'] (pure pyython):"
print np.sum(gWhx - bc['dcdWxh'])

print "sum different between the last row of gWhx (theano) and the last row of bc['dcdWxh'] (pure python):"
print np.sum(gWhx[-1] - bc['dcdWxh'][-1])

我得到以下输出:

sum difference between gWho (theano) and bc['dcdWho'] (pure python):
-4.59268040265e-16
sum differnce between gWhh(theano) and bc['dcdWhh'] (pure python):
0.120527063611
sum difference between gWhx (theano) and bc['dcdWxh'] (pure pyython):
-0.332613468652
sum different between the last row of gWhx (theano) and the last row of bc['dcdWxh'] (pure python):
4.33680868994e-18

因此,我得到了隐藏层和输出权之间的权重矩阵的导数,但不是隐藏层 -> 隐藏或输入 -> 隐藏的权重矩阵的导数。但这个疯狂的事情是我总是得到权重矩阵输入的最后一行 ->隐藏正确。这对我来说太疯狂了。我不知道这里发生了什么。请注意,权重矩阵 input -> hidden 的最后一行不对应于最后一个时间步或任何东西(例如,这可以通过我为最后一个时间步正确计算导数但没有正确地传播回时间来解释)。 dcdWxh 是 dcdWxh 所有时间步长的总和——那么我怎样才能得到这一行正确而其他行都没有呢???

有人可以帮忙吗?我在这里完全没有想法。

最佳答案

您应该计算两个矩阵之差的逐点绝对值之和。由于特定的学习任务(您是否模拟零函数?:),无论是哪个,普通总和可能接近于零。

最后一行大概实现了来自常量神经元的权重,即偏差,因此您 - 似乎 - 总是获得正确的偏差(但是,检查绝对值的总和)。

它看起来也像矩阵的行优先和列优先符号混淆,就像在

gWhx - bc['dcdWxh']

它读起来像权重从“隐藏到 x”与“x 到隐藏”相反。

我宁愿将此作为评论发布,但我缺乏这样做的声誉。对不起!

关于python - pure-python RNN 和 theano RNN 计算不同的梯度——提供的代码和结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27544698/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com