gpt4 book ai didi

python - 当 RDD 包含用户定义的类时,为什么 Apache PySpark top() 会失败?

转载 作者:太空狗 更新时间:2023-10-30 01:33:50 25 4
gpt4 key购买 nike

我正在本地计算机上通过 iPython Notebook 使用 Apache Spark 的 PySpark 制作一些代码原型(prototype)。我写了一些看起来工作正常的代码,但是当我对它做一个简单的更改时,它就崩溃了。

下面的第一个代码块有效。第二个 block 因给定错误而失败。非常感谢任何帮助。我怀疑这个错误与序列化 Python 对象有关。该错误表明它不能 Pickle TestClass。我找不到有关如何使我的类(class)可以 pickle 的信息。该文档说“通常,如果您可以 pickle 该对象的每个属性,则可以 pickle 任何对象。类、函数和方法不能被 pickle ——如果您 pickle 一个对象,则该对象的类不会被 pickle ,只是一个标识什么的字符串它所属的类。这对大多数 pickle 都适用(但请注意关于 pickle 长期储存的讨论)。”我不明白这一点,因为我已经尝试用日期时间类替换我的 TestClass 并且一切似乎都正常。

无论如何,代码:

# ----------- This code works -----------------------------
class TestClass(object):
def __init__(self):
self.teststr = 'Hello'
def __str__(self):
return self.teststr
def __repr__(self):
return self.teststr
def test(self):
return 'test: {0}'.format(self.teststr)

#load multiple text files into list of RDDs, concatenate them, then remove headers
trip_rdd = trip_rdds[0]
for rdd in trip_rdds[1:]:
trip_rdd = trip_rdd.union(rdd)

#filter out header rows from result
trip_rdd = trip_rdd.filter(lambda r: r != header)

#split the line, then convert each element to a dictionary
trip_rdd = trip_rdd.map(lambda r: r.split(','))
trip_rdd = trip_rdd.map(lambda r, k = header_keys: dict(zip(k, r)))
trip_rdd = trip_rdd.map(convert_trip_dict)
#trip_rdd = trip_rdd.map(lambda d, ps = g_nyproj_str: Trip(d, ps))

#originally I map the given dictionaries to a 'Trip' class I defined with various bells and whistles.
#I've simplified to using TestClass above and still seem to get the same error

trip_rdd = trip_rdd.map(lambda t: TestClass())
trip_rdd = trip_rdd.map(lambda t: t.test()) #(1) Watch this row

print trip_rdd.count()
temp = trip_rdd.top(3)
print temp
print '...done'

以上代码返回以下内容:

347098

['测试:你好','测试:你好','测试:你好']

...完成

但是,当我删除标记为“(1) watch this row”的行( map 的最后一行)并重新运行时,我得到了以下错误。它很长,所以在发布输出之前,我将在这里结束我的问题。再一次,我真的很感激帮助。

提前致谢!

# ----------- This code FAILS -----------------------------
class TestClass(object):
def __init__(self):
self.teststr = 'Hello'
def __str__(self):
return self.teststr
def __repr__(self):
return self.teststr
def test(self):
return 'test: {0}'.format(self.teststr)

#load multiple text files into list of RDDs, concatenate them, then remove headers
trip_rdds = [sc.textFile(f) for f in trip_files]
trip_rdd = trip_rdds[0]
for rdd in trip_rdds[1:]:
trip_rdd = trip_rdd.union(rdd)

#filter out header rows from result
trip_rdd = trip_rdd.filter(lambda r: r != header)

#split the line, then convert each element to a dictionary
trip_rdd = trip_rdd.map(lambda r: r.split(','))
trip_rdd = trip_rdd.map(lambda r, k = header_keys: dict(zip(k, r)))
trip_rdd = trip_rdd.map(convert_trip_dict)
#trip_rdd = trip_rdd.map(lambda d, ps = g_nyproj_str: Trip(d, ps))

#originally I map the given dictionaries to a 'Trip' class I defined with various bells and whistles.
#I've simplified to using TestClass above and still seem to get the same error

trip_rdd = trip_rdd.map(lambda t: TestClass())
trip_rdd = trip_rdd.map(lambda t: t.test()) #(1) Watch this row

print trip_rdd.count()
temp = trip_rdd.top(3)
print temp
print '...done'

输出:347098

*---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-76-6550318a5d5b> in <module>()
29 #count them
30 print trip_rdd.count()
---> 31 temp = trip_rdd.top(3)
32 print temp
33 print '...done'

C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\rdd.pyc in top(self, num, key)
1043 return heapq.nlargest(num, a + b, key=key)
1044
-> 1045 return self.mapPartitions(topIterator).reduce(merge)
1046
1047 def takeOrdered(self, num, key=None):

C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\rdd.pyc in reduce(self, f)
713 yield reduce(f, iterator, initial)
714
--> 715 vals = self.mapPartitions(func).collect()
716 if vals:
717 return reduce(f, vals)

C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\rdd.pyc in collect(self)
674 """
675 with SCCallSiteSync(self.context) as css:
--> 676 bytesInJava = self._jrdd.collect().iterator()
677 return list(self._collect_iterator_through_file(bytesInJava))
678

C:\Programs\Coding\Languages\Python\Anaconda_32bit\Conda\lib\site-packages\py4j-0.8.2.1-py2.7.egg\py4j\java_gateway.pyc in __call__(self, *args)
536 answer = self.gateway_client.send_command(command)
537 return_value = get_return_value(answer, self.gateway_client,
--> 538 self.target_id, self.name)
539
540 for temp_arg in temp_args:

C:\Programs\Coding\Languages\Python\Anaconda_32bit\Conda\lib\site-packages\py4j-0.8.2.1-py2.7.egg\py4j\protocol.pyc in get_return_value(answer, gateway_client, target_id, name)
298 raise Py4JJavaError(
299 'An error occurred while calling {0}{1}{2}.\n'.
--> 300 format(target_id, '.', name), value)
301 else:
302 raise Py4JError(

Py4JJavaError: An error occurred while calling o463.collect.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 49.0 failed 1 times, most recent failure: Lost task 1.0 in stage 49.0 (TID 99, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\worker.py", line 107, in main
process()
File "C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\worker.py", line 98, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\serializers.py", line 231, in dump_stream
bytes = self.serializer.dumps(vs)
File "C:\Programs\Apache\Spark\spark-1.2.0-bin-hadoop2.4\python\pyspark\serializers.py", line 393, in dumps
return cPickle.dumps(obj, 2)
PicklingError: Can't pickle <class '__main__.TestClass'>: attribute lookup __main__.TestClass failed

at org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:137)
at org.apache.spark.api.python.PythonRDD$$anon$1.<init>(PythonRDD.scala:174)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:96)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
at org.apache.spark.scheduler.Task.run(Task.scala:56)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1214)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1203)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1202)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1202)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:696)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:696)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1420)
at akka.actor.Actor$class.aroundReceive(Actor.scala:465)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor.aroundReceive(DAGScheduler.scala:1375)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:516)
at akka.actor.ActorCell.invoke(ActorCell.scala:487)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:238)
at akka.dispatch.Mailbox.run(Mailbox.scala:220)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:393)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)*

最佳答案

原来你必须在它自己的模块中定义你的类,而不是在代码的主体中。如果你这样做然后导入模块,pickle 能够成功地 pickle 和 unpickle 对象。然后,该类将按照您的预期与 Spark 一起工作。

关于python - 当 RDD 包含用户定义的类时,为什么 Apache PySpark top() 会失败?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29130870/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com