- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
关闭。这个问题需要更多focused .它目前不接受答案。
想改善这个问题吗?更新问题,使其仅关注一个问题 editing this post .
5年前关闭。
Improve this question
更新 1.0 开始
好像打电话的时候
for i, Wi in enumerate(W.T):
idx.append(i)
result.append(pool.apply_async(ALS_Y, (X, Wi, Q, lambda_, n_factors, i,)))
传递给函数的参数
ALS_Y/ALS_X
不是引用,它复制了参数..所以,当
X
或
Y
很
large matrixes
,例如,就我而言,它是
6000*40
左右(它是一个
for-loop
,让我们假设迭代次数是
50 000
,所以......),它超过了内存限制。
import multiprocessing
import time
import numpy as np
def func(idx):
global a
a[idx] += 1
if __name__ == "__main__":
a=range(10)
for j in xrange(2):
pool = multiprocessing.Pool(processes=8)
result = []
for i in xrange(10):
result.append(pool.apply_async(func, (i, )))
pool.close()
pool.join()
print a
print "Sub-process(es) done."
它输出:`
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Sub-process(es) done.
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Sub-process(es) done.
So, this means it still copied
一个`!
for ii in range(n_iterations):
for u, Wu in enumerate(W):
X[u] = np.linalg.solve(np.dot(Y, np.dot(np.diag(Wu), Y.T)) + lambda_ * np.eye(n_factors),
np.dot(Y, np.dot(np.diag(Wu), Q[u].T))).T #X_inner loop
for i, Wi in enumerate(W.T):
Y[:,i] = np.linalg.solve(np.dot(X.T, np.dot(np.diag(Wi), X)) + lambda_ * np.eye(n_factors), #Y_inner loop
np.dot(X.T, np.dot(np.diag(Wi), Q[:, i])))#Y_inner loop
error = get_error(Q, X, Y, W)
weighted_errors.append(error)
print '{}th iteration is completed'.format(ii)
使用多处理库后,我的代码现在:
def ALS_X(Y, Wu, Q, lambda_, n_factors, u):
return np.linalg.solve(np.dot(Y, np.dot(np.diag(Wu), Y.T)) + lambda_ * np.eye(n_factors),
np.dot(Y, np.dot(np.diag(Wu), Q[u].T))).T
for ii in range(n_iterations):
pool = multiprocessing.Pool(processes=12)#create pool
result = []#store each row for X
idx = []#store the row number
for u, Wu in enumerate(W):
idx.append(u)
result.append(pool.apply_async(ALS_X, (Y, Wu, Q, lambda_, n_factors, u,)))
pool.close()
pool.join()
for u, vector in zip(idx, result):
X[u] = vector.get()#assign the result to X
######################################
pool = multiprocessing.Pool(processes=12)#for Y, much similar to X
result = []
idx = []
for i, Wi in enumerate(W.T):
idx.append(i)
result.append(pool.apply_async(ALS_Y, (X, Wi, Q, lambda_, n_factors, i,)))
pool.close()
pool.join()
for i, vector in zip(idx, result):
Y[:,i] = vector.get()
error = get_error(Q, X, Y, W)
weighted_errors.append(error)
print '{}th iteration is completed'.format(ii), 'error: ',error
但是有点惨,程序总是无声无息的崩溃...
load_data
get_error
和
vec2str
,因为在这里我随机生成矩阵..
import pandas as pd
import numpy as np
import multiprocessing
def vec2str(vec):
res = ''
for dim in len(vec):
res += str(vec[dim]) + ','
return res
def load_data(heads, filename, sep,header=None):
data = pd.read_table(filename, sep=sep, header=header, names=heads)
rp = data.pivot_table(columns=['sid'],index=['uid'],values=['rating'])#not generally...
Q = rp.fillna(0)
Q = Q.values
W = Q >0.5
W[W == True] = 1
W[W == False] = 0
W = W.astype(np.float64, copy=False)
return Q, W, rp
def get_error(Q, X, Y, W):
return np.sum((W * (Q - np.dot(X, Y)))**2)
'''
X[u] = np.linalg.solve(np.dot(, np.dot(np.diag(), .T)) + * np.eye(),
np.dot(, np.dot(np.diag(), Q[u].T))).T
'''
def ALS_X(Y, Wu, Q, lambda_, n_factors, u):
return np.linalg.solve(np.dot(Y, np.dot(np.diag(Wu), Y.T)) + lambda_ * np.eye(n_factors),
np.dot(Y, np.dot(np.diag(Wu), Q[u].T))).T
'''
Y[:,i] = np.linalg.solve(np.dot(X.T, np.dot(np.diag(Wi), X)) + lambda_ * np.eye(n_factors),
np.dot(X.T, np.dot(np.diag(Wi), Q[:, i])))
'''
def ALS_Y(X, Wi, Q, lambda_, n_factors, i):
return np.linalg.solve(np.dot(X.T, np.dot(np.diag(Wi), X)) + lambda_ * np.eye(n_factors),
np.dot(X.T, np.dot(np.diag(Wi), Q[:, i])))
if __name__ == "__main__":
lambda_ = 0.1
n_factors = 40
filename = 'data_songID'
n_iterations = 20
#Q, W, rp = load_data(['uid', 'sid', 'rating'], filename, ',')
Q = np.random.rand(1000,1000)
m, n = Q.shape
W = np.eye(1000)
print 'Loading data finished, ', 'size: ', Q.shape
print 'Settings ', 'lambda = {}'.format(lambda_), 'n_factors = {}'.format(n_factors)
X = 5 * np.random.rand(m, n_factors)
Y = 5 * np.random.rand(n_factors, n)
errors = []
for ii in range(n_iterations):
X = np.linalg.solve(np.dot(Y, Y.T) + lambda_ * np.eye(n_factors),
np.dot(Y, Q.T)).T
Y = np.linalg.solve(np.dot(X.T, X) + lambda_ * np.eye(n_factors),
np.dot(X.T, Q))
if ii % 100 == 0:
print('{}th iteration is completed'.format(ii))
errors.append(get_error(Q, X, Y, W))
Q_hat = np.dot(X, Y)
print('Error of rated movies: {}'.format(get_error(Q, X, Y, W)))
print errors
#####ALS start....#####
print '*'*100
weighted_errors = []
for ii in range(n_iterations):
pool = multiprocessing.Pool(processes=12)
result = []
idx = []
for u, Wu in enumerate(W):
idx.append(u)
result.append(pool.apply_async(ALS_X, (Y, Wu, Q, lambda_, n_factors, u,)))
pool.close()
pool.join()
for u, vector in zip(idx, result):
X[u] = vector.get()
######################################
pool = multiprocessing.Pool(processes=12)
result = []
idx = []
for i, Wi in enumerate(W.T):
idx.append(i)
result.append(pool.apply_async(ALS_Y, (X, Wi, Q, lambda_, n_factors, i,)))
pool.close()
pool.join()
for i, vector in zip(idx, result):
Y[:,i] = vector.get()
error = get_error(Q, X, Y, W)
weighted_errors.append(error)
print '{}th iteration is completed'.format(ii), 'error: ',error
weighted_Q_hat = np.dot(X,Y)
print weighted_errors
X.tofile('X.bin')
Y.tofile('Y.bin')
latent_user_file = open('user_latent','w')
for idx in len(rp.axes[0]):
latent_user_file.write(str(rp.axes[0][idx]) + '\t' + vec2str(X[idx,:]) + '\n')
latent_mid_file = open('mid_latent', 'w')
for idx in len(rp.axes[1]):
latent_mid_file.write(str(rp.axes[1][idx]) + '\t' + vec2str(Y.T[idx,:]) + '\n')
最佳答案
去年我遇到了你对 Python 中的“并行循环”的渴望,并在我的物理论文中修改了一个。有很多模块可以做你想做的事,但我发现我真的只能用 让它工作。 pp 我想要的任意函数的方式。
如果你想要看起来像这样的东西:
ResultList = Library_ParallelLoop.Main(
Function = ExampleFunction,
ListOfArgSets = ListOfArgSets,
Algorithm = 'pp',
PrintExtra = True
)
Finding Primes Example:
Repo:
import Library_ParallelLoop
def do_the_thing_function(ii):
for u, Wu in enumerate(W):
X[u] = np.linalg.solve(np.dot(Y, np.dot(np.diag(Wu), Y.T)) + lambda_ * np.eye(n_factors),
np.dot(Y, np.dot(np.diag(Wu), Q[u].T))).T #X_inner loop
for i, Wi in enumerate(W.T):
Y[:,i] = np.linalg.solve(np.dot(X.T, np.dot(np.diag(Wi), X)) + lambda_ * np.eye(n_factors), #Y_inner loop
np.dot(X.T, np.dot(np.diag(Wi), Q[:, i])))#Y_inner loop
error = get_error(Q, X, Y, W)
weighted_errors.append(error)
print '{}th iteration is completed'.format(ii)
return #whatever your result is supposed to be... your code doesn't work on its own
ListOfArgSets = []
for ii in range(n_iterations):
ListOfArgSets.append( { "ii" : ii , } )
ResultList = Library_ParallelLoop.Main(
Function = do_the_thing_function,
ListOfArgSets = ListOfArgSets,
Algorithm = 'pp',
PrintExtra = True
)
关于python - 如何在python中并行for循环?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37583531/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!