- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
在 Python Pandas 中,我想通过在多个列上执行多个聚合函数来添加列,例如 R dplyr mutate_each。比如Python Pandas能否实现和下面R脚本一样的处理?
R dplyr :
iris %>%
group_by(Species) %>%
mutate_each(funs(min, max, mean), starts_with("Sepal"))
但是,我能够使用 Pandas 实现与 mutate 相同的处理。如下面的代码所示,我可以执行一个聚合函数并添加一列。
R dplyr :
iris %>% group_by(Species) %>% mutate(MaxSepalLen = max(Sepal.Length))
Python Pandas :
iris.assign(MaxSepalLen = iris.groupby("Species")["Sepal.Length"].transform('max'))
最佳答案
使用 Pandas,这可以以更冗长的方式完成。
首先,让我们准备数据:
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
iris_data = load_iris()
iris = pd.DataFrame(iris_data.data, columns = [c[0:3] + c[6] for c in iris_data.feature_names])
iris['Species'] = iris_data.target_names[iris_data.target]
现在我们可以模仿mutate_each
管道:
# calculate the aggregates
pivot = iris.groupby("Species")[iris.columns[iris.columns.str.startswith('sepal')]
].aggregate(['min', 'max', np.mean])
# name the aggregates
pivot.columns = pivot.columns.get_level_values(0) + pivot.columns.get_level_values(1)
# merge aggregates with the original dataframe
new_iris = iris.merge(pivot, left_on='Species', right_index=True)
pivot
表实际上是一个小型数据透视表:
seplmin seplmax seplmean sepwmin sepwmax sepwmean
Species
setosa 4.3 5.8 5.006 2.3 4.4 3.418
versicolor 4.9 7.0 5.936 2.0 3.4 2.770
virginica 4.9 7.9 6.588 2.2 3.8 2.974
new_iris
是一个 150x11 的表格,包含来自 iris
和 pivot
的所有列,与 dplyr
相同> 输出。
关于python - 在 Python Pandas 中,如何像 R dplyr mutate_each 一样使用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46803072/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!