- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
有时候我只是讨厌使用中间件。以此为例:我想要一个查找表,将一组输入(域)值的值映射到输出(范围)值。映射是唯一的。 Python map 可以做到这一点,但由于 map 很大,我想,为什么不使用 ps.Series 及其索引,这增加了我可以做到的好处:
像这样:
domain2range = pd.Series(allrangevals, index=alldomainvals)
# Apply the map
query_vals = pd.Series(domainvals, index=someindex)
result = query_vals.map(domain2range)
assert result.index is someindex # Nice
assert (result.values in allrangevals).all() # Nice
按预期工作。但不是。上面的 .map 的时间成本随着 len(domain2range)
而不是(更明智地)O(len(query_vals))
增长,如图所示:
numiter = 100
for n in [10, 1000, 1000000, 10000000,]:
domain = np.arange(0, n)
range = domain+10
maptable = pd.Series(range, index=domain).sort_index()
query_vals = pd.Series([1,2,3])
def f():
query_vals.map(maptable)
print n, timeit.timeit(stmt=f, number=numiter)/numiter
10 0.000630810260773
1000 0.000978469848633
1000000 0.00130645036697
10000000 0.0162791204453
捂脸。在 n=10000000 时,每个映射值花费 (0.01/3) 秒。
那么,问题:
最佳答案
https://github.com/pandas-dev/pandas/issues/21278
热身是个问题。 (双面手掌)。 Pandas 在首次使用时静默构建并缓存哈希索引 (O(maplen))。调用测试函数并预构建索引可获得更好的性能。
numiter = 100
for n in [10, 100000, 1000000, 10000000,]:
domain = np.arange(0, n)
range = domain+10
maptable = pd.Series(range, index=domain) #.sort_index()
query_vals = pd.Series([1,2,3])
def f1():
query_vals.map(maptable)
f1()
print "Pandas1 ", n, timeit.timeit(stmt=f1, number=numiter)/numiter
def f2():
query_vals.map(maptable.get)
f2()
print "Pandas2 ", n, timeit.timeit(stmt=f2, number=numiter)/numiter
maptabledict = maptable.to_dict()
query_vals_list = pd.Series([1,2,3]).tolist()
def f3():
{k: maptabledict[k] for k in query_vals_list}
f3()
print "Py dict ", n, timeit.timeit(stmt=f3, number=numiter)/numiter
print
pd.show_versions()
Pandas1 10 0.000621199607849
Pandas2 10 0.000686831474304
Py dict 10 2.0170211792e-05
Pandas1 100000 0.00149286031723
Pandas2 100000 0.00118808984756
Py dict 100000 8.47816467285e-06
Pandas1 1000000 0.000708899497986
Pandas2 1000000 0.000479419231415
Py dict 1000000 1.64794921875e-05
Pandas1 10000000 0.000798969268799
Pandas2 10000000 0.000410139560699
Py dict 10000000 1.47914886475e-05
...虽然 python 字典快 10 倍有点令人沮丧。
关于python - 为什么 pandas.series.map 慢得惊人?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50633939/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!