- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我想使用前几天相同小时-分钟的平均值来填充 NaN。为了简化,这是我的 df 的一个例子。
timstamp data
22/04/2016 09:00 1
22/04/2016 09:05 2
...
23/04/2016 09:00 3
23/04/2016 09:05 4
...
24/04/2016 09:00 5
24/04/2016 09:05 6
...
25/04/2016 09:00 7
25/04/2016 09:05 8
...
25/04/2016 10:00 NaN
25/04/2016 10:05 NaN
真实数据包含连续 5 分钟间隔的许多天。
df = df.groupby(df.index.minute).fillna(df.data.rolling(3).mean())
尝试从前一小时到分钟开始滚动平均值过去几天,但没有奏效。
df = df.groupby(df.index.minute).ffill()
的另一种方法是从前两行(即 7 和 8)中取值,这些值来自同一分钟同一天的前一个小时。
但是,我想要以下结果:
timstamp data
22/04/2016 09:00 1
22/04/2016 09:05 2
...
23/04/2016 09:00 3
23/04/2016 09:05 4
...
24/04/2016 09:00 5
24/04/2016 09:05 6
...
25/04/2016 09:00 7
25/04/2016 09:05 8
25/04/2016 10:00 3
25/04/2016 10:05 4
其中值 3(倒数第二行)是前几天同一小时-分钟的值的平均值(1、3 和 5 的平均值),4(最后一行)是 2 的平均值、4 和 6。鉴于我的 df 的大小,我想取前几十天的平均值。
编辑
我越来越近了。使用以下代码,数据的平均值按我想要的类似小时和分钟计算:
df.set_index('timstamp', inplace=True)
df=df.groupby([df.index.hour, df.index.minute]).mean()
df.index.names = ["hour", "minute"]
但是,它使用整个数据来获取小时-分钟的平均值。我想要的是仅使用前几天的相同小时-分钟,我可以在计算中设置过去的天数。然后,用结果的平均值来填充NaN。
最佳答案
让我们试试这个:
# time sample every 5 mins
idx = pd.date_range('2018-01-01', '2018-01-31', freq='300s')
np.random.seed(2019)
# create toy data
df = pd.DataFrame({'idx':idx,
'data':np.random.uniform(0,5, len(idx))})
df.loc[np.random.uniform(0,1,len(idx)) > 0.95, 'data'] = None
# means by the hour, can also use median
means = df.resample('H', on='idx').data.mean()
# get the timestamp on the hour
df['hour'] = df['idx'] - pd.to_timedelta(df.idx.dt.minute, unit='m')
# get the hour stamp of previous day
df['hour'] -= pd.to_timedelta(1, unit='d')
# update NaN
# df.loc[df.data.isna(), 'data'] = means[nan_hour]
# the original mapping raised a ValueError due to duplicates in nan_hour
df.loc[df.data.isna(), 'data'] = df.loc[df.data.isna(), 'hour'].\
replace({'hour': means})
关于python - 使用前几天同一小时的平均值填充 NaN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55633253/
我有一个大小为 320x320 像素的阈值图像。我通过设置 ROI 以 20x20 像素的 block 循环遍历整个图像。我需要找到每个 block 的平均值。所以我将这些图像 block 传递给函数
我正在尝试学习 Javascript。我已经构建了以下代码来从一组数字中找到平均值。它有效除了最后返回的值总是 NaN。我不知道为什么。如果我将这 block 移到 block 外,它似乎完全忘记了变
假设我的数据已经分组,我该如何计算中位数和其他统计数据? Index Value Count 0 6 2 1 2 3 2 9 8 在上面
我试图计算的有趣情况。基本上在一行中,我有产品名称,其右侧的行是自首次收到产品以来经过的天数。 为 ex 计算的天数是 =TODAY()-BB2 我现在要做的是识别让我们说产品词“卡车”,然后计算卡车
我想知道如何计算某些数字的累积平均值。我将举一个简单的例子来描述我在寻找什么。 我有以下号码 vec 1) 为您的向量(或列表、一维数组或您如何称呼它)的每个元素评估此表达式,您将获得累积平均值。
我正在尝试对数据库表中的每一行进行平均。但它不能正常工作我想忽略该值,如果为空,它不会计算为零。使用我的代码,它将空值计算为零我想这样做 MS Excel 如果行/单元格为空,它将忽略。 Contro
我有以下信息(按 View 返回): DateTime ItemID UserTyp Seconds 2012-01-01 10 S 12 2012-01-01
我正在使用excel的average函数来获取欧洲各个城市一系列酒店价格的平均值。 =average(21,42,63,84,105) 我希望能够计算每个平均函数中的变量数量(例如,在上面的示例中有
我有一长串列,我想一次性计算非零中位数、平均值和标准差。我不能只删除基于 1 列的 0 行,因为同一列中另一列的值可能不是 0。 下面是我目前的代码,用于计算中位数、平均值等,包括零。 agg
这是我的问题: 我有一张这样的 table : Table Log int id; int time; timestamp DATE; int sid (FK to table Site);
JSON: [{"id":"1","user":"001","answer":"1,1,3,2,2,1,3,2"}, {"id":"2","user":"002","answer":"2,3,3,2,
有个问题: 使用适当的列名称,显示 obs 类型“CONT”的允许 ID 和平均 obs 值,其中 CONT 的平均 obs 值 >= 40。 假设承认是表1,观察是表2,但具有相同的主键Admit_
我有一个记录传感器数据的应用程序,我希望能够从多个传感器生成平均值,可以是一个、两个、三个或很多... 编辑:这些是温度传感器,因此 0 是传感器可能作为值存储在数据库中的值。 我最初的出发点是这个
我有这样一个数据框 id power flag 0 20 0 1 25 0 2 26 1 3 30 1 4 18 0 5
我想计算所有事件 blob 的平均位置。为此,首先我需要所有 X 和 Y 位置的总和。在这种情况下我该怎么做? contourFinder.findContours(grayImg, minB
我是一个十足的 Java 新手。上周一开始,之前从未用任何语言进行过任何编程。因此,如果我发现简单的事情变得复杂,请耐心等待。 我收到了一个文本文件。如下图: 第一个数据是时间(午夜过后的秒数),第二
我正在尝试为 Audacity 编写一个简单的测量插件,它就像用石头砸我的头骨一样有趣。我想要做的就是获取一段音频并找到所有样本的平均值(该 block 的 DC offset ),这样我就可以将它作
我正在尝试计算给定多边形内的值: 实际上我正在使用这个管道: 'aggregation': { 'pipeline': [ { "$match" : {
我有一个 pandas DataFrame,其中包含包含列表的列。我正在尝试获取此专栏中列表的方法。 这是我的 DataFrame 的示例: Loc Background 0
我尝试加速计算放置在数组中的4d向量的平均值。这是我的代码: #include #include #include #include #include #include typedef f
我是一名优秀的程序员,十分优秀!