- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在创建一个自动编码器作为我的 Kaggle 竞赛完整模型的一部分。我试图将编码器的重量联系起来,转移到解码器。在第一个纪元之前,权重正确同步,之后,解码器权重只是卡住,并且跟不上梯度下降更新的编码器权重。
我在谷歌上几乎每篇关于这个问题的帖子都找了 12 个小时,但似乎没有人知道我的案例的答案。最接近的是这个 Tying Autoencoder Weights in a Dense Keras Layer但是问题是通过不使用可变张量作为内核来解决的,但是我已经没有使用那种类型的张量作为我的解码器内核,所以没有用。
我正在使用本文中定义的 DenseTied Keras 自定义图层类 https://towardsdatascience.com/build-the-right-autoencoder-tune-and-optimize-using-pca-principles-part-ii-24b9cca69bd6 ,完全一样,只是改变了我引用 Keras 支持的方式以适应我的导入风格。
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
这是自定义层定义
class DenseTied(tf.keras.layers.Layer):
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
tied_to=None,
**kwargs):
self.tied_to = tied_to
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super().__init__(**kwargs)
self.units = units
self.activation = tf.keras.activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self.activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self.bias_constraint = tf.keras.constraints.get(bias_constraint)
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
if self.tied_to is not None:
self.kernel = tf.keras.backend.transpose(self.tied_to.kernel)
self.non_trainable_weights.append(self.kernel)
else:
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def call(self, inputs):
output = tf.keras.backend.dot(inputs, self.kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, self.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
这是使用虚拟数据集进行模型训练和测试
rand_samples = np.random.rand(16, 51)
dummy_ds = tf.data.Dataset.from_tensor_slices((rand_samples, rand_samples)).shuffle(16).batch(16)
encoder = tf.keras.layers.Dense(1, activation="linear", input_shape=(51,), use_bias=True)
decoder = DenseTied(51, activation="linear", tied_to=encoder, use_bias=True)
autoencoder = tf.keras.Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
print("Encoder Kernel Before 1 Epoch", encoder.kernel[0])
print("Decoder Kernel Before 1 Epoch", decoder.kernel[0][0])
autoencoder.fit(dummy_ds, epochs=1)
print("Encoder Kernel After 1 Epoch", encoder.kernel[0])
print("Decoder Kernel After 1 Epoch", decoder.kernel[0][0])
预期输出是两个内核在第一个元素中完全相同(为简单起见,只打印一个权重)
当前的输出显示 Decoder Kernel 没有像 Transposed Encoder Kernel 一样更新
2019-09-06 14:55:42.070003: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll
2019-09-06 14:55:42.984580: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.088109: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.166145: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:43.203865: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-09-06 14:55:43.277988: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.300888: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.309040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:44.077814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-06 14:55:44.094542: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2019-09-06 14:55:44.099411: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2019-09-06 14:55:44.103424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4712 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 1) 52
_________________________________________________________________
dense_tied (DenseTied) (None, 51) 103
=================================================================
Total params: 103
Trainable params: 103
Non-trainable params: 0
_________________________________________________________________
Encoder Kernel Before 1 Epoch tf.Tensor([0.20486075], shape=(1,), dtype=float32)
Decoder Kernel Before 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
1/1 [==============================] - 1s 657ms/step - loss: 0.3396 - accuracy: 0.0000e+00
Encoder Kernel After 1 Epoch tf.Tensor([0.20530733], shape=(1,), dtype=float32)
Decoder Kernel After 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
PS C:\Users\whitm\Desktop\CodeProjects\ForestClassifier-DEC>
我不明白我做错了什么。
最佳答案
为了绑定(bind)权重,我建议使用 Keras functional API可以共享图层。也就是说,这是一种将编码器和解码器之间的权重联系起来的替代实现:
class TransposableDense(tf.keras.layers.Dense):
def __init__(self, units, **kwargs):
super().__init__(units, **kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.t_output_dim = input_dim
self.kernel = self.add_weight(shape=(int(input_dim), self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.bias_t = self.add_weight(shape=(input_dim,),
initializer=self.bias_initializer,
name='bias_t',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.bias_t = None
# self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs, transpose=False):
bs, input_dim = inputs.get_shape()
kernel = self.kernel
bias = self.bias
if transpose:
assert input_dim == self.units
kernel = tf.keras.backend.transpose(kernel)
bias = self.bias_t
output = tf.keras.backend.dot(inputs, kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
bs, input_dim = input_shape
output_dim = self.units
if input_dim == self.units:
output_dim = self.t_output_dim
return bs, output_dim
可以通过使用 transpose=True
调用该层来转置该密集层的内核。请注意,这可能破坏一些基本的 Keras 原则(例如,该层具有多个输出形状),但它应该适用于您的情况。
这是一个示例,展示了如何使用它来定义模型:
a = tf.keras.layers.Input((51,))
dense = TransposableDense(1, activation='linear', use_bias=True)
encoder_out = dense(a)
decoder_out = dense(encoder_out, transpose=True)
encoder = tf.keras.Model(a, encoder_out)
autoencoder = tf.keras.Model(a, decoder_out)
关于python - Keras 自动编码器 : Tying Weights from Encoder To Decoder not working,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57827274/
我得到了一些有趣的结果,试图辨别使用 Encode::decode("utf8", $var) 之间的区别。和 utf8::decode($var) .我已经发现,在一个变量上多次调用前者最终会导致错
我尝试使用 FlushedInputStream :Android decoder->decode returned false for Bitmap download 但没有任何变化,因为我使用:B
我有一小部分代码: from pyasn1.type import univ from pyasn1.codec.ber import decoder decoder.decode(binary_fi
这个问题在这里已经有了答案: Instantiated optional variable shows as nil in Xcode debugger (2 个答案) 关闭 2 年前。 在 Swi
我在 Playground 中有以下示例代码。如果结果符合 Decodable 协议(protocol),我想解码网络请求的结果。 知道为什么这段代码不起作用吗? protocol APIReques
我正在尝试使用 imagecreatefromwebp() 将 webp 文件转换为 JPEG,但不幸的是,它向我发出警告:警告:imagecreatefromwebp():WebP 解码:无法解码输
我试图覆盖 JSONDecoder 解码数据的方式。 我尝试了以下方法: struct Response : Decodable { init(from decoder: Decoder) t
ACTIVATE_THIS = """ eJx1UsGOnDAMvecrIlYriDRlKvU20h5aaY+teuilGo1QALO4CwlKAjP8fe1QGGalRoLEefbzs+Mk Sb7
我正在尝试使用 swift 4 来解析本地 json 文件: { "success": true, "lastId": null, "hasMore": false,
我的代码有问题。 我正在尝试使用ExtJS和Codeigniter制作上传文件格式。 这是我的下面的代码, Ext.require([ 'Ext.form.field.File',
我有一些遗留代码正在调用 sun.net.www.ParseUtil.decode()。我想避免调用供应商特定的函数,所以我想用其他东西替换调用。 我可以使用 java.net.URLDecoder.
使用 Sonatype Nexus,我仅在访问 /nexus/#admin/support/status 时收到此错误消息. Ext.JSON.decode(): You're trying to d
我正在学习 Elm,让我感到困惑的一件事是“Json.Decode.succeed”。根据docs succeed : a -> Decoder a Ignore the JSON and produ
有什么区别 URLDecoder.decode(String s) 和 URLDecoder.decode(String s, String enc) 我有一个 cookie 值,例如 val=%22
使用 Google Apps 脚本,我想解码 HTML,例如: Some text & text ¢ 存储为: Some text & text ¢ 所以,类似的问题:How t
我正在对带有字幕的视频进行编码,但出现错误“解码的字幕文本中的 UTF-8 无效;可能缺少 -sub_charenc 选项。解码流时出错”,但视频还是编码了。忽略此错误的后果是什么?谷歌搜索显示一个人
我有如下代码: cn_bytes = [157, 188, 156] cn_str = "" clen = len(cn_bytes) count = int(clen / 3) for x in r
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 4年前关闭。 Improve thi
This script give you a decoded listing from an encoded file. Supports *,je, ,vbe, .asp, .hta, .htm,
telnet客户端响应如何解码 我认为这是一个特定的响应,因为所有思科服务器都有相同的响应.这段文字的名称是什么,我如何解密它 '\xff\xfb\x01\xff\xfb\x03\xff\xfd\x1
我是一名优秀的程序员,十分优秀!