- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在创建一个自动编码器作为我的 Kaggle 竞赛完整模型的一部分。我试图将编码器的重量联系起来,转移到解码器。在第一个纪元之前,权重正确同步,之后,解码器权重只是卡住,并且跟不上梯度下降更新的编码器权重。
我在谷歌上几乎每篇关于这个问题的帖子都找了 12 个小时,但似乎没有人知道我的案例的答案。最接近的是这个 Tying Autoencoder Weights in a Dense Keras Layer但是问题是通过不使用可变张量作为内核来解决的,但是我已经没有使用那种类型的张量作为我的解码器内核,所以没有用。
我正在使用本文中定义的 DenseTied Keras 自定义图层类 https://towardsdatascience.com/build-the-right-autoencoder-tune-and-optimize-using-pca-principles-part-ii-24b9cca69bd6 ,完全一样,只是改变了我引用 Keras 支持的方式以适应我的导入风格。
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
这是自定义层定义
class DenseTied(tf.keras.layers.Layer):
def __init__(self, units,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
tied_to=None,
**kwargs):
self.tied_to = tied_to
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super().__init__(**kwargs)
self.units = units
self.activation = tf.keras.activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self.bias_initializer = tf.keras.initializers.get(bias_initializer)
self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self.activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self.bias_constraint = tf.keras.constraints.get(bias_constraint)
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2)
self.supports_masking = True
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
if self.tied_to is not None:
self.kernel = tf.keras.backend.transpose(self.tied_to.kernel)
self.non_trainable_weights.append(self.kernel)
else:
self.kernel = self.add_weight(shape=(input_dim, self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) >= 2
output_shape = list(input_shape)
output_shape[-1] = self.units
return tuple(output_shape)
def call(self, inputs):
output = tf.keras.backend.dot(inputs, self.kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, self.bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
这是使用虚拟数据集进行模型训练和测试
rand_samples = np.random.rand(16, 51)
dummy_ds = tf.data.Dataset.from_tensor_slices((rand_samples, rand_samples)).shuffle(16).batch(16)
encoder = tf.keras.layers.Dense(1, activation="linear", input_shape=(51,), use_bias=True)
decoder = DenseTied(51, activation="linear", tied_to=encoder, use_bias=True)
autoencoder = tf.keras.Sequential()
autoencoder.add(encoder)
autoencoder.add(decoder)
autoencoder.compile(metrics=['accuracy'],
loss='mean_squared_error',
optimizer='sgd')
autoencoder.summary()
print("Encoder Kernel Before 1 Epoch", encoder.kernel[0])
print("Decoder Kernel Before 1 Epoch", decoder.kernel[0][0])
autoencoder.fit(dummy_ds, epochs=1)
print("Encoder Kernel After 1 Epoch", encoder.kernel[0])
print("Decoder Kernel After 1 Epoch", decoder.kernel[0][0])
预期输出是两个内核在第一个元素中完全相同(为简单起见,只打印一个权重)
当前的输出显示 Decoder Kernel 没有像 Transposed Encoder Kernel 一样更新
2019-09-06 14:55:42.070003: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll
2019-09-06 14:55:42.984580: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.088109: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.166145: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:43.203865: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-09-06 14:55:43.277988: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.733
pciBusID: 0000:01:00.0
2019-09-06 14:55:43.300888: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-06 14:55:43.309040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-09-06 14:55:44.077814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-06 14:55:44.094542: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2019-09-06 14:55:44.099411: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2019-09-06 14:55:44.103424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4712 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 1) 52
_________________________________________________________________
dense_tied (DenseTied) (None, 51) 103
=================================================================
Total params: 103
Trainable params: 103
Non-trainable params: 0
_________________________________________________________________
Encoder Kernel Before 1 Epoch tf.Tensor([0.20486075], shape=(1,), dtype=float32)
Decoder Kernel Before 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
1/1 [==============================] - 1s 657ms/step - loss: 0.3396 - accuracy: 0.0000e+00
Encoder Kernel After 1 Epoch tf.Tensor([0.20530733], shape=(1,), dtype=float32)
Decoder Kernel After 1 Epoch tf.Tensor(0.20486075, shape=(), dtype=float32)
PS C:\Users\whitm\Desktop\CodeProjects\ForestClassifier-DEC>
我不明白我做错了什么。
最佳答案
为了绑定(bind)权重,我建议使用 Keras functional API可以共享图层。也就是说,这是一种将编码器和解码器之间的权重联系起来的替代实现:
class TransposableDense(tf.keras.layers.Dense):
def __init__(self, units, **kwargs):
super().__init__(units, **kwargs)
def build(self, input_shape):
assert len(input_shape) >= 2
input_dim = input_shape[-1]
self.t_output_dim = input_dim
self.kernel = self.add_weight(shape=(int(input_dim), self.units),
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
self.bias_t = self.add_weight(shape=(input_dim,),
initializer=self.bias_initializer,
name='bias_t',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.bias_t = None
# self.input_spec = tf.keras.layers.InputSpec(min_ndim=2, axes={-1: input_dim})
self.built = True
def call(self, inputs, transpose=False):
bs, input_dim = inputs.get_shape()
kernel = self.kernel
bias = self.bias
if transpose:
assert input_dim == self.units
kernel = tf.keras.backend.transpose(kernel)
bias = self.bias_t
output = tf.keras.backend.dot(inputs, kernel)
if self.use_bias:
output = tf.keras.backend.bias_add(output, bias, data_format='channels_last')
if self.activation is not None:
output = self.activation(output)
return output
def compute_output_shape(self, input_shape):
bs, input_dim = input_shape
output_dim = self.units
if input_dim == self.units:
output_dim = self.t_output_dim
return bs, output_dim
可以通过使用 transpose=True
调用该层来转置该密集层的内核。请注意,这可能破坏一些基本的 Keras 原则(例如,该层具有多个输出形状),但它应该适用于您的情况。
这是一个示例,展示了如何使用它来定义模型:
a = tf.keras.layers.Input((51,))
dense = TransposableDense(1, activation='linear', use_bias=True)
encoder_out = dense(a)
decoder_out = dense(encoder_out, transpose=True)
encoder = tf.keras.Model(a, encoder_out)
autoencoder = tf.keras.Model(a, decoder_out)
关于python - Keras 自动编码器 : Tying Weights from Encoder To Decoder not working,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57827274/
我希望深入了解 LightFM 实现的以下权重: 样本权重 什么是sample_weights在 fit方法?我读到它们是为了模拟时间衰减,但这究竟是如何工作的?解释这一点的示例或文章将非常有帮助。
如果这是一个愚蠢的问题,我预先道歉。 当调用 nw:weighted-path-to 时,会返回一个链接列表,描述起始海龟和目标海龟之间的最短路径。 类似地,调用 nw:turtles-on-weig
我阅读了以下代码: //talkback.c -- nosy, informative program #include #include //for strlen() prototype #d
我有这个示例 html 文件: Test font bold (weight = 700) Test font bold (weight = 900) 我不知道为什么如果我将
您好,我正在为我自己的数据集训练 VGG16 网络。下面给出了我使用的代码。 from keras.models import Sequential from scipy.misc import im
我刚看完the notes CNN 上的斯坦福 CS231n 和现场链接 demo ;然而,我不确定演示中的“激活”、“激活梯度”、“权重”和“权重梯度”指的是什么。 以下屏幕截图已从演示中复制。 混
我不明白 maxout 是如何工作的,我怀疑这是由于我对线性代数乘法的可视化造成的。基本上,我的印象是 maxout 函数有两组权重,均经过单独训练,然后只选择一组。但我怀疑这可能是错误的,因为我没有
我运行了 Tensorflow 1.0 提供的 ptb_word_lm.py,但它显示了这条消息: ValueError: Attempt to have a second RNNCell use t
我有一个关于 R 中的样本函数的简单问题。我从长度为 5 的输入向量中随机抽样 0 和 1 并将它们相加,该向量指定要运行的试验次数并设置种子以生成可重复的随机数字。种子按预期工作,但根据我在 pro
我有一个以“h5”格式保存的模型。在使用 编译模型后,我正在尝试恢复训练并尝试加载优化器的权重 model.optimizer.set_weights(weights_list) 哪里weights_
我正在尝试为我的大学项目开发电话分类器模型。我已经训练了我的模型,当我尝试通过执行 python app/server.pyserve 来部署模型时遇到了问题。我读了一篇文章( https://f
所以... var testArray=new Array("hello"); testArray.length=100; console.log(testArray.length); 我相信上面的内
在 css 规范中,什么会影响更多的 inline 样式或外部 !important 外部“style.css”: #di{color: green!important;} div 文本颜色是红色还
我正在使用 http://hughsk.github.io/colony/ 的调整后的代码,但我不断收到错误: Uncaught TypeError: Cannot read property 'we
我们有一个系统,它按表中的“优先级”编号处理记录。我们通过表的内容定义优先级,例如 UPDATE table SET priority=3 WHERE processed IS NULL UPDATE
我已经使用 Darkflow 和 yolov2.weights 进行了定制训练。 checkpoint 文件夹中有四个文件。它们是: 1.yolov2-3c-5500.data-00000-of-00
我需要将 weighted.mean 函数包含在另一个函数中,作为我正在处理的项目的一部分。我无法让 w 参数在我正在处理的函数中正常工作。 为了使我的整体功能正常工作,我需要满足使权重参数必须是可选
我想使用 ggplot 绘制加权 CDF。一些旧的非 SO 讨论(例如 2012 年的 this)表明这是不可能的,但我想我会重新加注。 例如,考虑以下数据: df <- data.frame(x=s
这个问题已经有答案了: 已关闭11 年前。 Possible Duplicate: In Java, what is the best way to determine the size of an
我需要将 weighted.mean 函数包含在另一个函数中,作为我正在处理的项目的一部分。我无法让 w 参数在我正在处理的函数中正常工作。 为了使我的整体功能正常工作,我需要满足使权重参数必须是可选
我是一名优秀的程序员,十分优秀!