- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我必须计算许多傅里叶变换。我想与我的许多核心并行地做这些。请注意,我不想要并行 FFT 算法,我只想启动许多令人尴尬的并行 FFT。
我发现,虽然我的 CPU 使用率上升了,但完成时间并没有减少。
我们创建一些随机数据
In [1]: import numpy as np
In [2]: x = np.random.random(10000000) # some random data
以及在冷计算和计算一次后计算 FFT 需要多长时间。
In [3]: %time _ = np.fft.rfft(x) # cost of one run
CPU times: user 589 ms, sys: 23.9 ms, total: 612 ms
Wall time: 613 ms
In [4]: %time _ = np.fft.rfft(x) # there is some speedup from mulitple runs
CPU times: user 365 ms, sys: 12.4 ms, total: 378 ms
Wall time: 381 ms
我们按顺序对一系列数据运行它
In [5]: %time _ = map(np.fft.rfft, [x] * 12) # many runs sequentially
CPU times: user 4.4 s, sys: 135 ms, total: 4.54 s
Wall time: 4.54 s
In [6]: 4.54 / 12 # Same cost per FFT
Out[6]: 0.37833333333333335
我们做同样的事情,但现在使用一个包含四个线程的线程池。
In [7]: from multiprocessing.pool import ThreadPool
In [8]: pool = ThreadPool(4) # I have four physical cores
In [9]: %time _ = pool.map(np.fft.rfft, [x] * 12)
CPU times: user 15.5 s, sys: 1.3 s, total: 16.8 s
Wall time: 4.79 s
我们发现没有加速。然而,我们确实发现 CPU 使用率(由 top
测量)接近 400%。这不是 GIL 的问题。 FFT 的某些方面不能很好地并行化。也许我们正在使用更高级别的缓存?
硬件 Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz
一般来说这是怎么回事,有没有办法利用多个内核来并行加速多个 FFT?
最佳答案
在我的工作站上,ThreadPool 确实提供了加速(虽然不是完美的加速):
In [42]: x = np.random.random(2**23)
In [43]: %time _ = list(map(np.fft.rfft, [x]*12))
CPU times: user 3.32 s, sys: 380 ms, total: 3.7 s
Wall time: 3.7 s
In [44]: tpool = ThreadPool(4)
In [45]: %time _ = list(tpool.map(np.fft.rfft, [x]*12))
CPU times: user 5.4 s, sys: 596 ms, total: 6 s
Wall time: 1.62 s
In [46]: 3.7/4
Out[46]: 0.925
我正在使用 Python3,所以也许那里有什么东西?否则,它可能是硬件。 FFT 受内存限制,因此很可能单个线程会使您的内存系统饱和。通过下降到让您控制亲和性的环境,您可能能够获得更好的内存系统局部性。
Intel(R) Core(TM) i7-4930K CPU @ 3.40GHz。
关于python - 在 FFT 中没有加速的情况下增加了占用率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32811230/
FFT 库(例如 FFTW 或 numpy.fft)通常提供两个函数 fft() 和 ifft()(及其用于实值输入的特殊版本)。这些功能似乎被定义为 ifft(fft(X)) == X 和 fft(
如果我有一个特定大小 M(2 的幂)的 FFT 实现,我如何计算一组大小 P=k*M 的 FFT,其中 k 也是 2 的幂? #define M 256 #define P 1024 comple
下午好! 我正在尝试基于我已有的简单递归 FFT 实现来开发 NTT 算法。 考虑以下代码(coefficients'的长度,让它为m,是2的精确幂): /// /// Calculates the
我正在分析时间序列数据,并希望提取 5 个主要频率分量并将其用作训练机器学习模型的特征。我的数据集是 921 x 10080 。每行是一个时间序列,总共有 921 个。 在探索可能的方法时,我遇到了各
我找不到任何官方文档来证明 scipy.fft 实际上是 numpy.fft.fftpack.fft 的链接。这是显示链接的 iPython session : In [1]: import scip
文档说 np.fft.fft 这样做: Compute the one-dimensional discrete Fourier Transform. 和 np.fft.rfft 这样做: Compu
近一个月来,我一直在与一个非常奇怪的错误作斗争。问你们是我最后的希望。我用 C 编写了一个程序,它集成了 2d Cahn–Hilliard equation在傅里叶(或倒数)空间中使用隐式欧拉 (IE
我一直在制作一个例程,使用 NumPy/Scipy 测量两个光谱之间的相位差。 我已经有了Matlab写的例程,所以我基本上是用NumPy重新实现了函数和相应的单元测试。但是,我发现单元测试失败了,因
我正在研究使用 Renderscript 对大型复杂输入数组执行 FFT。 FFT 是相当标准的,因为它涉及三个循环,但内部循环执行 FFT 中的蝶形运算。因为每个蝴蝶使用数组的不同部分,所以没有明显
我需要通过修改 FFT 结果来均衡音乐样本。 我知道如何获得每个输出虚数的频率,问题是修改这个值以获得“均衡器效果”。 我需要知道如何缩放这个值。 条目大小为 4096 个样本,采样率为 44100
我将在 kiss-fft 之前制定几个计划同时(平行),我可以这样做吗,或者换句话说,kiss-fft 线程安全吗? 谢谢 最佳答案 自述文件: No static data is used. Th
要在频域中插入信号,可以在时域中填充零并执行 FFT。 假设给定向量 X 中的元素数为 N 并且 Y 与 X 相同但在一侧用 N 零填充。然后下面给出相同的结果。 $$\hat{x}(k)=\sum_
我通过相关了解了 DFT 的工作原理,并将其用作理解 FFT 结果的基础。如果我有一个以 44.1kHz 采样的离散信号,那么这意味着如果我要获取 1 秒的数据,我将有 44,100 个样本。为了对其
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
有人知道 Mayer FFT 的实现吗(我不必花很多时间研究代码)? 我正在尝试执行卷积,ifft 似乎产生了我称之为“镜像”的输出。换句话说,我的内核+信号长度被限制为 N/2 并且占据 n=0..
我有以下代码...请注意#生成正弦曲线下的两行。一个使用比另一个更高的 2pi 精度值,但它们仍然应该给出几乎相同的结果。 import numpy as np import matplotlib.p
我正在努力确保 FFTW 做我认为它应该做的事情,但我遇到了问题。我正在使用 OpenCV 的 cv::Mat。我制作了一个测试程序,给定一个 Mat f,计算 ifft(fft(f)) 并将结果与
我是从事电信项目的计算机程序员。 在我们的项目中,我必须将一系列复数更改为它们的傅立叶变换。因此我需要一个高效的 FFT 代码来满足 C89 标准。 我正在使用以下代码,它运行良好: shor
我目前正在尝试了解 numpy 的 fft 函数。为此,我测试了以下假设: 我有两个函数,f(x) = x^2 和 g(x) = f'(x) = 2*x。根据傅立叶变换定律和 wolfram alph
我一直在使用 FFT,目前正在尝试使用 FFT 从文件中获取声音波形(最终对其进行修改),然后将修改后的波形输出回文件。我得到了声波的 FFT,然后对其使用了反 FFT 函数,但输出文件听起来一点也不
我是一名优秀的程序员,十分优秀!