gpt4 book ai didi

python - 如何为固定数据大小增加 deconv2d 过滤器的大小?

转载 作者:太空狗 更新时间:2023-10-30 01:26:34 25 4
gpt4 key购买 nike

我正在尝试调整这个 DCGAN code能够处理 2x80 数据样本。

全部generator层是 tf.nn.deconv2d 而不是 h0,它是 ReLu。目前每个级别的生成器过滤器大小为:

Generator: h0: s_h16 x s_w16: 1  x  5
Generator: h1: s_h8 x s_w8: 1 x 10
Generator: h2: s_h4 x s_w4: 1 x 20
Generator: h3: s_h2 x s_w2: 1 x 40
Generator: h4: s_h x s_w: 2 x 80

由于我的数据的性质,我希望它们最初生成为 2 x ...,即过滤器为 2 x 52 x 102 x 202 x 402 x 80。但是,当我只是手动输入 s_h16 = 2 * s_h16 等直到 s_h2 = 2 * s_h2 时,我遇到了以下错误:

ValueError: Shapes (64, 1, 40, 64) and (64, 2, 40, 64) are not compatible

所以我知道错误发生在 h3 级别,但我无法完全追踪到它(这里的 64 是批量大小)。任何想法如何解决这个问题?


编辑:编辑后的DCGANs代码为in this repository ,在设置 DCGAN-tensorflow 之后 as in the instructions你必须将 Data_npy 文件夹放入 DCGAN-tensorflow/data 文件夹。

然后运行 ​​python main.py --dataset Data_npy --input_height=2 --output_height=2 --train 将为您提供我得到的错误。

完整的错误回溯如下:

Traceback (most recent call last):
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 560, in merge_with
new_dims.append(dim.merge_with(other[i]))
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 135, in merge_with
self.assert_is_compatible_with(other)
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 108, in assert_is_compatible_with
% (self, other))
ValueError: Dimensions 1 and 2 are not compatible

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "main.py", line 97, in <module>
tf.app.run()
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/platform/app.py", line 48, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "main.py", line 80, in main
dcgan.train(FLAGS)
File "/home/marija/DCGAN-tensorflow/model.py", line 180, in train
.minimize(self.g_loss, var_list=self.g_vars)
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/training/optimizer.py", line 315, in minimize
grad_loss=grad_loss)
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/training/optimizer.py", line 386, in compute_gradients
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/ops/gradients_impl.py", line 580, in gradients
in_grad.set_shape(t_in.get_shape())
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 413, in set_shape
self._shape = self._shape.merge_with(shape)
File "/home/marija/.local/lib/python3.5/site-packages/tensorflow/python/framework/tensor_shape.py", line 564, in merge_with
(self, other))
ValueError: Shapes (64, 1, 40, 64) and (64, 2, 40, 64) are not compatible

最佳答案

在你的 ops.py 文件中

您的问题来自 deconv 过滤器中的跨步大小,将 conv2ddeconv2d 的 header 修改为:

def conv2d(input_, output_dim, 
k_h=5, k_w=5, d_h=1, d_w=2, stddev=0.02,
name="conv2d"):

def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=1, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):

就这样它开始为我训练。不过我没有检查输出。

问题在于考虑输入的形状,在反向传播过程中将高度调整 2(d_h 的原始值)将导致 (64, 1, 40, 64) 形状。 (因为你只有2个值)

您可能还想将 k_h=5 更改为 k_h=2,因为当您只有 2 个元素时,在高度上取 5 个元素没有多大意义。

关于python - 如何为固定数据大小增加 deconv2d 过滤器的大小?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44311244/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com