- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
假设我有一个结构类似于以下内容的 pandas DataFrame。然而在实际上它可能会更大,并且 1 级索引的数量以及 2 级索引的数量(每个 1 级索引)会有所不同,因此解决方案不应对此做出假设:
index = pandas.MultiIndex.from_tuples([
("a", "s"),
("a", "u"),
("a", "v"),
("b", "s"),
("b", "u")])
result = pandas.DataFrame([
[1, 2],
[3, 4],
[5, 6],
[7, 8],
[9, 10]], index=index, columns=["x", "y"])
看起来像这样:
x y
a s 1 2
u 3 4
v 5 6
b s 7 8
u 9 10
现在假设我想为每个“a”和“b”级别创建一个“总计”行。因此,将以上内容作为输入,我希望我的代码产生如下内容:
x y
a s 1 2
u 3 4
v 5 6
t 9 12
b s 7 8
u 9 10
b t 16 18
这是我目前的代码:
# Calculate totals
for level, _ in result.groupby(level=0):
# work out the global total for that desk:
x_sum = result.loc[level]["x"].sum()
y_sum = result.loc[level]["y"].sum()
result = result.append(pandas.DataFrame([[x_sum, y_sum]], columns=result.columns, index=pandas.MultiIndex.from_tuples([(level, "t")])))
但这会导致“总计”列被附加到末尾:
x y
a s 1 2
u 3 4
v 5 6
b s 7 8
u 9 10
a t 9 12
b t 16 18
使用 result.sort_index()
排序也没有达到我的要求:
x y
a s 1 2
t 9 12
u 3 4
v 5 6
b s 7 8
t 16 18
u 9 10
我做错了什么?
最佳答案
这真的很烦人,但是 sorted Multiindex
的原因是性能更好。此外,如果未排序,MultiIndex
可能是一些 UnsortedIndexError如果需要通过MultiIndex
进行选择。
但是如果真的需要改变标签的位置是可能的使用reindex
.
df = result.groupby(level=0).sum()
df.index = [df.index, ['t'] * len(df.index)]
df1 = pd.concat([result, df]).sort_index().reindex(['s','u','t'], level=1)
df1 = pd.concat([result, df]).sort_index()
print (df1)
x y
a s 1 2
t 4 6
u 3 4
b s 5 6
t 12 14
u 7 8
df1 = df1.reindex(['s','u','t'], level=1)
print (df1)
x y
a s 1 2
u 3 4
t 4 6
b s 5 6
u 7 8
t 12 14
更动态的解决方案:
print (result.index.get_level_values(1).unique().tolist())
['s', 'u']
df1 = df1.reindex(result.index.get_level_values(1).unique().tolist() + ['t'], level=1)
print (df1)
x y
a s 1 2
u 3 4
t 4 6
b s 5 6
u 7 8
t 12 14
另一种解决方案 setting with enlargement在带有 GroupBy.apply
的自定义函数中:
def f(x):
x.loc[(x.name, 't'),:] = x.sum()
return x
df = result.groupby(level=0, group_keys=False).apply(f)
print (df)
x y
a s 1.0 2.0
u 3.0 4.0
t 4.0 6.0
b s 5.0 6.0
u 7.0 8.0
t 12.0 14.0
关于python - 如何插入到 MultiIndex DataFrame 的特定位置?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45610153/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!