- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我一直在使用 Vader Sentiment 进行一些文本情感分析,我注意到我的数据中有很多“有待改进”的短语被错误地归类为中性:
In[11]: sentiment('way to go John')
Out[11]: {'compound': 0.0, 'neg': 0.0, 'neu': 1.0, 'pos': 0.0}
在深入研究 Vader 源代码后,我发现了以下字典:
# check for special case idioms using a sentiment-laden keyword known to SAGE
SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2,
"cut the mustard": 2, "kiss of death": -1.5, "hand to mouth": -2,
"way to go": 3}
如您所见,我手动添加了“Way to go”条目。不过好像没什么效果:
In [12]: sentiment('way to go John')
Out[12]: {'compound': 0.0, 'neg': 0.0, 'neu': 1.0, 'pos': 0.0}
知道我错过了什么吗?或者更具体地说,我需要做什么才能使添加自定义习语起作用?这是 Vader Sentiment 源代码:
#######################################################################################################################
# SENTIMENT SCORING SCRIPT
#######################################################################################################################
'''
Created on July 04, 2013
@author: C.J. Hutto
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text. Eighth International Conference on
Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
'''
import os, math, re, sys, fnmatch, string
reload(sys)
f = 'C:\\Users\\jamacwan\\Code\\Python\\Twitter API\\Sentiment Analysis\\vader_sentiment_lexicon.txt'
def make_lex_dict(f):
return dict(map(lambda (w, m): (w, float(m)), [wmsr.strip().split('\t')[0:2] for wmsr in open(f) ]))
WORD_VALENCE_DICT = make_lex_dict(f)
# empirically derived valence ratings for words, emoticons, slang, swear words, acronyms/initialisms
##CONSTANTS#####
#(empirically derived mean sentiment intensity rating increase for booster words)
B_INCR = 0.293
B_DECR = -0.293
#(empirically derived mean sentiment intensity rating increase for using ALLCAPs to emphasize a word)
c_INCR = 0.733
# for removing punctuation
REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape(string.punctuation))
PUNC_LIST = [".", "!", "?", ",", ";", ":", "-", "'", "\"",
"!!", "!!!", "??", "???", "?!?", "!?!", "?!?!", "!?!?"]
NEGATE = ["aint", "arent", "cannot", "cant", "couldnt", "darent", "didnt", "doesnt",
"ain't", "aren't", "can't", "couldn't", "daren't", "didn't", "doesn't",
"dont", "hadnt", "hasnt", "havent", "isnt", "mightnt", "mustnt", "neither",
"don't", "hadn't", "hasn't", "haven't", "isn't", "mightn't", "mustn't",
"neednt", "needn't", "never", "none", "nope", "nor", "not", "nothing", "nowhere",
"oughtnt", "shant", "shouldnt", "uhuh", "wasnt", "werent",
"oughtn't", "shan't", "shouldn't", "uh-uh", "wasn't", "weren't",
"without", "wont", "wouldnt", "won't", "wouldn't", "rarely", "seldom", "despite"]
# booster/dampener 'intensifiers' or 'degree adverbs' http://en.wiktionary.org/wiki/Category:English_degree_adverbs
BOOSTER_DICT = {"absolutely": B_INCR, "amazingly": B_INCR, "awfully": B_INCR, "completely": B_INCR, "considerably": B_INCR,
"decidedly": B_INCR, "deeply": B_INCR, "effing": B_INCR, "enormously": B_INCR,
"entirely": B_INCR, "especially": B_INCR, "exceptionally": B_INCR, "extremely": B_INCR,
"fabulously": B_INCR, "flipping": B_INCR, "flippin": B_INCR,
"fricking": B_INCR, "frickin": B_INCR, "frigging": B_INCR, "friggin": B_INCR, "fully": B_INCR, "fucking": B_INCR,
"greatly": B_INCR, "hella": B_INCR, "highly": B_INCR, "hugely": B_INCR, "incredibly": B_INCR,
"intensely": B_INCR, "majorly": B_INCR, "more": B_INCR, "most": B_INCR, "particularly": B_INCR,
"purely": B_INCR, "quite": B_INCR, "really": B_INCR, "remarkably": B_INCR,
"so": B_INCR, "substantially": B_INCR,
"thoroughly": B_INCR, "totally": B_INCR, "tremendously": B_INCR,
"uber": B_INCR, "unbelievably": B_INCR, "unusually": B_INCR, "utterly": B_INCR,
"very": B_INCR,
"almost": B_DECR, "barely": B_DECR, "hardly": B_DECR, "just enough": B_DECR,
"kind of": B_DECR, "kinda": B_DECR, "kindof": B_DECR, "kind-of": B_DECR,
"less": B_DECR, "little": B_DECR, "marginally": B_DECR, "occasionally": B_DECR, "partly": B_DECR,
"scarcely": B_DECR, "slightly": B_DECR, "somewhat": B_DECR,
"sort of": B_DECR, "sorta": B_DECR, "sortof": B_DECR, "sort-of": B_DECR}
# check for special case idioms using a sentiment-laden keyword known to SAGE
SPECIAL_CASE_IDIOMS = {"the shit": 3, "the bomb": 3, "bad ass": 1.5, "yeah right": -2,
"cut the mustard": 2, "kiss of death": -1.5, "hand to mouth": -2,
"way to go": 6}
def negated(list, nWords=[], includeNT=True):
nWords.extend(NEGATE)
for word in nWords:
if word in list:
return True
if includeNT:
for word in list:
if "n't" in word:
return True
if "least" in list:
i = list.index("least")
if i > 0 and list[i-1] != "at":
return True
return False
def normalize(score, alpha=15):
# normalize the score to be between -1 and 1 using an alpha that approximates the max expected value
normScore = score/math.sqrt( ((score*score) + alpha) )
return normScore
def wildCardMatch(patternWithWildcard, listOfStringsToMatchAgainst):
listOfMatches = fnmatch.filter(listOfStringsToMatchAgainst, patternWithWildcard)
return listOfMatches
def isALLCAP_differential(wordList):
countALLCAPS= 0
for w in wordList:
if w.isupper():
countALLCAPS += 1
cap_differential = len(wordList) - countALLCAPS
if cap_differential > 0 and cap_differential < len(wordList):
isDiff = True
else: isDiff = False
return isDiff
#check if the preceding words increase, decrease, or negate/nullify the valence
def scalar_inc_dec(word, valence, isCap_diff):
scalar = 0.0
word_lower = word.lower()
if word_lower in BOOSTER_DICT:
scalar = BOOSTER_DICT[word_lower]
if valence < 0: scalar *= -1
#check if booster/dampener word is in ALLCAPS (while others aren't)
if word.isupper() and isCap_diff:
if valence > 0: scalar += c_INCR
else: scalar -= c_INCR
return scalar
def sentiment(text):
"""
Returns a float for sentiment strength based on the input text.
Positive values are positive valence, negative value are negative valence.
"""
if not isinstance(text, unicode) and not isinstance(text, str):
text = str(text)
wordsAndEmoticons = text.split() #doesn't separate words from adjacent punctuation (keeps emoticons & contractions)
text_mod = REGEX_REMOVE_PUNCTUATION.sub('', text) # removes punctuation (but loses emoticons & contractions)
wordsOnly = text_mod.split()
# get rid of empty items or single letter "words" like 'a' and 'I' from wordsOnly
for word in wordsOnly:
if len(word) <= 1:
wordsOnly.remove(word)
# now remove adjacent & redundant punctuation from [wordsAndEmoticons] while keeping emoticons and contractions
for word in wordsOnly:
for p in PUNC_LIST:
pword = p + word
x1 = wordsAndEmoticons.count(pword)
while x1 > 0:
i = wordsAndEmoticons.index(pword)
wordsAndEmoticons.remove(pword)
wordsAndEmoticons.insert(i, word)
x1 = wordsAndEmoticons.count(pword)
wordp = word + p
x2 = wordsAndEmoticons.count(wordp)
while x2 > 0:
i = wordsAndEmoticons.index(wordp)
wordsAndEmoticons.remove(wordp)
wordsAndEmoticons.insert(i, word)
x2 = wordsAndEmoticons.count(wordp)
# get rid of residual empty items or single letter "words" like 'a' and 'I' from wordsAndEmoticons
for word in wordsAndEmoticons:
if len(word) <= 1:
wordsAndEmoticons.remove(word)
# remove stopwords from [wordsAndEmoticons]
#stopwords = [str(word).strip() for word in open('stopwords.txt')]
#for word in wordsAndEmoticons:
# if word in stopwords:
# wordsAndEmoticons.remove(word)
# check for negation
isCap_diff = isALLCAP_differential(wordsAndEmoticons)
sentiments = []
for item in wordsAndEmoticons:
v = 0
i = wordsAndEmoticons.index(item)
if (i < len(wordsAndEmoticons)-1 and item.lower() == "kind" and \
wordsAndEmoticons[i+1].lower() == "of") or item.lower() in BOOSTER_DICT:
sentiments.append(v)
continue
item_lowercase = item.lower()
if item_lowercase in WORD_VALENCE_DICT:
#get the sentiment valence
v = float(WORD_VALENCE_DICT[item_lowercase])
#check if sentiment laden word is in ALLCAPS (while others aren't)
if item.isupper() and isCap_diff:
if v > 0: v += c_INCR
else: v -= c_INCR
n_scalar = -0.74
if i > 0 and wordsAndEmoticons[i-1].lower() not in WORD_VALENCE_DICT:
s1 = scalar_inc_dec(wordsAndEmoticons[i-1], v,isCap_diff)
v = v+s1
if negated([wordsAndEmoticons[i-1]]): v = v*n_scalar
if i > 1 and wordsAndEmoticons[i-2].lower() not in WORD_VALENCE_DICT:
s2 = scalar_inc_dec(wordsAndEmoticons[i-2], v,isCap_diff)
if s2 != 0: s2 = s2*0.95
v = v+s2
# check for special use of 'never' as valence modifier instead of negation
if wordsAndEmoticons[i-2] == "never" and (wordsAndEmoticons[i-1] == "so" or wordsAndEmoticons[i-1] == "this"):
v = v*1.5
# otherwise, check for negation/nullification
elif negated([wordsAndEmoticons[i-2]]): v = v*n_scalar
if i > 2 and wordsAndEmoticons[i-3].lower() not in WORD_VALENCE_DICT:
s3 = scalar_inc_dec(wordsAndEmoticons[i-3], v,isCap_diff)
if s3 != 0: s3 = s3*0.9
v = v+s3
# check for special use of 'never' as valence modifier instead of negation
if wordsAndEmoticons[i-3] == "never" and \
(wordsAndEmoticons[i-2] == "so" or wordsAndEmoticons[i-2] == "this") or \
(wordsAndEmoticons[i-1] == "so" or wordsAndEmoticons[i-1] == "this"):
v = v*1.25
# otherwise, check for negation/nullification
elif negated([wordsAndEmoticons[i-3]]): v = v*n_scalar
# future work: consider other sentiment-laden idioms
#other_idioms = {"back handed": -2, "blow smoke": -2, "blowing smoke": -2, "upper hand": 1, "break a leg": 2,
# "cooking with gas": 2, "in the black": 2, "in the red": -2, "on the ball": 2,"under the weather": -2}
onezero = u"{} {}".format(wordsAndEmoticons[i-1], wordsAndEmoticons[i])
twoonezero = u"{} {} {}".format(wordsAndEmoticons[i-2], wordsAndEmoticons[i-1], wordsAndEmoticons[i])
twoone = u"{} {}".format(wordsAndEmoticons[i-2], wordsAndEmoticons[i-1])
threetwoone = u"{} {} {}".format(wordsAndEmoticons[i-3], wordsAndEmoticons[i-2], wordsAndEmoticons[i-1])
threetwo = u"{} {}".format(wordsAndEmoticons[i-3], wordsAndEmoticons[i-2])
if onezero in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[onezero]
elif twoonezero in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[twoonezero]
elif twoone in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[twoone]
elif threetwoone in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[threetwoone]
elif threetwo in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[threetwo]
if len(wordsAndEmoticons)-1 > i:
zeroone = u"{} {}".format(wordsAndEmoticons[i], wordsAndEmoticons[i+1])
if zeroone in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[zeroone]
if len(wordsAndEmoticons)-1 > i+1:
zeroonetwo = u"{} {}".format(wordsAndEmoticons[i], wordsAndEmoticons[i+1], wordsAndEmoticons[i+2])
if zeroonetwo in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[zeroonetwo]
# check for booster/dampener bi-grams such as 'sort of' or 'kind of'
if threetwo in BOOSTER_DICT or twoone in BOOSTER_DICT:
v = v+B_DECR
# check for negation case using "least"
if i > 1 and wordsAndEmoticons[i-1].lower() not in WORD_VALENCE_DICT \
and wordsAndEmoticons[i-1].lower() == "least":
if (wordsAndEmoticons[i-2].lower() != "at" and wordsAndEmoticons[i-2].lower() != "very"):
v = v*n_scalar
elif i > 0 and wordsAndEmoticons[i-1].lower() not in WORD_VALENCE_DICT \
and wordsAndEmoticons[i-1].lower() == "least":
v = v*n_scalar
sentiments.append(v)
# check for modification in sentiment due to contrastive conjunction 'but'
if 'but' in wordsAndEmoticons or 'BUT' in wordsAndEmoticons:
try: bi = wordsAndEmoticons.index('but')
except: bi = wordsAndEmoticons.index('BUT')
for s in sentiments:
si = sentiments.index(s)
if si < bi:
sentiments.pop(si)
sentiments.insert(si, s*0.5)
elif si > bi:
sentiments.pop(si)
sentiments.insert(si, s*1.5)
if sentiments:
sum_s = float(sum(sentiments))
#print sentiments, sum_s
# check for added emphasis resulting from exclamation points (up to 4 of them)
ep_count = text.count("!")
if ep_count > 4: ep_count = 4
ep_amplifier = ep_count*0.292 #(empirically derived mean sentiment intensity rating increase for exclamation points)
if sum_s > 0: sum_s += ep_amplifier
elif sum_s < 0: sum_s -= ep_amplifier
# check for added emphasis resulting from question marks (2 or 3+)
qm_count = text.count("?")
qm_amplifier = 0
if qm_count > 1:
if qm_count <= 3: qm_amplifier = qm_count*0.18
else: qm_amplifier = 0.96
if sum_s > 0: sum_s += qm_amplifier
elif sum_s < 0: sum_s -= qm_amplifier
compound = normalize(sum_s)
# want separate positive versus negative sentiment scores
pos_sum = 0.0
neg_sum = 0.0
neu_count = 0
for sentiment_score in sentiments:
if sentiment_score > 0:
pos_sum += (float(sentiment_score) +1) # compensates for neutral words that are counted as 1
if sentiment_score < 0:
neg_sum += (float(sentiment_score) -1) # when used with math.fabs(), compensates for neutrals
if sentiment_score == 0:
neu_count += 1
if pos_sum > math.fabs(neg_sum): pos_sum += (ep_amplifier+qm_amplifier)
elif pos_sum < math.fabs(neg_sum): neg_sum -= (ep_amplifier+qm_amplifier)
total = pos_sum + math.fabs(neg_sum) + neu_count
pos = math.fabs(pos_sum / total)
neg = math.fabs(neg_sum / total)
neu = math.fabs(neu_count / total)
else:
compound = 0.0; pos = 0.0; neg = 0.0; neu = 0.0
s = {"neg" : round(neg, 3),
"neu" : round(neu, 3),
"pos" : round(pos, 3),
"compound" : round(compound, 4)}
return s
if __name__ == '__main__':
# --- examples -------
sentences = [
u"VADER is smart, handsome, and funny.", # positive sentence example
u"VADER is smart, handsome, and funny!", # punctuation emphasis handled correctly (sentiment intensity adjusted)
u"VADER is very smart, handsome, and funny.", # booster words handled correctly (sentiment intensity adjusted)
u"VADER is VERY SMART, handsome, and FUNNY.", # emphasis for ALLCAPS handled
u"VADER is VERY SMART, handsome, and FUNNY!!!",# combination of signals - VADER appropriately adjusts intensity
u"VADER is VERY SMART, really handsome, and INCREDIBLY FUNNY!!!",# booster words & punctuation make this close to ceiling for score
u"The book was good.", # positive sentence
u"The book was kind of good.", # qualified positive sentence is handled correctly (intensity adjusted)
u"The plot was good, but the characters are uncompelling and the dialog is not great.", # mixed negation sentence
u"A really bad, horrible book.", # negative sentence with booster words
u"At least it isn't a horrible book.", # negated negative sentence with contraction
u":) and :D", # emoticons handled
u"", # an empty string is correctly handled
u"Today sux", # negative slang handled
u"Today sux!", # negative slang with punctuation emphasis handled
u"Today SUX!", # negative slang with capitalization emphasis
u"Today kinda sux! But I'll get by, lol" # mixed sentiment example with slang and constrastive conjunction "but"
]
paragraph = "It was one of the worst movies I've seen, despite good reviews. \
Unbelievably bad acting!! Poor direction. VERY poor production. \
The movie was bad. Very bad movie. VERY bad movie. VERY BAD movie. VERY BAD movie!"
from nltk import tokenize
lines_list = tokenize.sent_tokenize(paragraph)
sentences.extend(lines_list)
tricky_sentences = [
"Most automated sentiment analysis tools are shit.",
"VADER sentiment analysis is the shit.",
"Sentiment analysis has never been good.",
"Sentiment analysis with VADER has never been this good.",
"Warren Beatty has never been so entertaining.",
"I won't say that the movie is astounding and I wouldn't claim that the movie is too banal either.",
"I like to hate Michael Bay films, but I couldn't fault this one",
"It's one thing to watch an Uwe Boll film, but another thing entirely to pay for it",
"The movie was too good",
"This movie was actually neither that funny, nor super witty.",
"This movie doesn't care about cleverness, wit or any other kind of intelligent humor.",
"Those who find ugly meanings in beautiful things are corrupt without being charming.",
"There are slow and repetitive parts, BUT it has just enough spice to keep it interesting.",
"The script is not fantastic, but the acting is decent and the cinematography is EXCELLENT!",
"Roger Dodger is one of the most compelling variations on this theme.",
"Roger Dodger is one of the least compelling variations on this theme.",
"Roger Dodger is at least compelling as a variation on the theme.",
"they fall in love with the product",
"but then it breaks",
"usually around the time the 90 day warranty expires",
"the twin towers collapsed today",
"However, Mr. Carter solemnly argues, his client carried out the kidnapping under orders and in the ''least offensive way possible.''"
]
sentences.extend(tricky_sentences)
for sentence in sentences:
print sentence
ss = sentiment(sentence)
print "\t" + str(ss)
print "\n\n Done!"
最佳答案
代码有几个问题:
特殊情况仅适用于 vader_sentiment_lexicon.txt
中的单词,因为:
if item_lowercase in WORD_VALENCE_DICT:
#get the sentiment valence
...
if onezero in SPECIAL_CASE_IDIOMS:
v = SPECIAL_CASE_IDIOMS[onezero]
...
如果您将短语更改为包含这样的词,例如“abandon”,那么这就可以了。如何修复:
if item_lowercase in WORD_VALENCE_DICT:
#get the sentiment valence
v = float(WORD_VALENCE_DICT[item_lowercase])
else:
v = 0
#move next statements out of if
#check if sentiment laden word is in ALLCAPS (while others aren't)
if item.isupper() and isCap_diff:
if v > 0: v += c_INCR
else: v -= c_INCR
加上一些内部修复。
仅当特殊词至少位于第 3 个位置(索引 > 2)时才检查特殊情况。
if i > 0 and wordsAndEmoticons[i-1].lower() not in WORD_VALENCE_DICT:
... # no SPECIAL_CASE_IDIOMS
if i > 1 and wordsAndEmoticons[i-2].lower() not in WORD_VALENCE_DICT:
... # no SPECIAL_CASE_IDIOMS
if i > 2 and wordsAndEmoticons[i-3].lower() not in WORD_VALENCE_DICT:
...
twoonezero = u"{} {} {}".format(wordsAndEmoticons[i-2], wordsAndEmoticons[i-1], wordsAndEmoticons[i])
...
elif twoonezero in SPECIAL_CASE_IDIOMS: ...
这里对于短语 way to abandon John
词 abandon
有索引 2,但没有这种情况。如果我们将短语更改为 you way to abandon John
,那么它就会开始工作。如何修复:将 SPECIAL cases 上移一个分支。或者更好地使用实际长度的特殊情况,而不是尝试硬编码。
简历:代码的支持并不容易。
关于python - 在 Python Vader Sentiment 中添加特例习语,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34400485/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!