- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我一直在研究这个函数,它生成我正在开发的模拟代码所需的一些参数,但在提高其性能方面遇到了瓶颈。
分析代码表明这是主要的瓶颈,因此我可以对其进行任何改进,无论多么微小都会很棒。
我想尝试向量化此函数的一部分,但不确定是否可行。
主要的挑战是存储在我的数组 params
中的参数取决于 params 的索引。我看到的唯一直接的解决方案是使用 np.ndenumerate
,但这似乎很慢。
是否可以对存储在数组中的值取决于它们的存储位置的这种类型的操作进行矢量化?或者创建一个只给我数组索引的元组的生成器会更聪明/更快吗?
import numpy as np
from scipy.sparse import linalg as LA
def get_params(num_bonds, energies):
"""
Returns the interaction parameters of different pairs of atoms.
Parameters
----------
num_bonds : ndarray, shape = (M, 20)
Sparse array containing the number of nearest neighbor bonds for
different pairs of atoms (denoted by their column) and next-
nearest neighbor bonds. Columns 0-9 contain nearest neighbors,
10-19 contain next-nearest neighbors
energies : ndarray, shape = (M, )
Energy vector corresponding to each atomic system stored in each
row of num_bonds.
"""
# -- Compute the bond energies
x = LA.lsqr(num_bonds, energies, show=False)[0]
params = np.zeros([4, 4, 4, 4, 4, 4, 4, 4, 4])
nn = {(0,0): x[0], (1,1): x[1], (2,2): x[2], (3,3): x[3], (0,1): x[4],
(1,0): x[4], (0,2): x[5], (2,0): x[5], (0,3): x[6], (3,0): x[6],
(1,2): x[7], (2,1): x[7], (1,3): x[8], (3,1): x[8], (2,3): x[9],
(3,2): x[9]}
nnn = {(0,0): x[10], (1,1): x[11], (2,2): x[12], (3,3): x[13], (0,1): x[14],
(1,0): x[14], (0,2): x[15], (2,0): x[15], (0,3): x[16], (3,0): x[16],
(1,2): x[17], (2,1): x[17], (1,3): x[18], (3,1): x[18], (2,3): x[19],
(3,2): x[19]}
"""
params contains the energy contribution of each site due to its
local environment. The shape is given by the number of possible atom
types and the number of sites in the lattice.
"""
for (i,j,k,l,m,jj,kk,ll,mm), val in np.ndenumerate(params):
params[i,j,k,l,m,jj,kk,ll,mm] = nn[(i,j)] + nn[(i,k)] + nn[(i,l)] + \
nn[(i,m)] + nnn[(i,jj)] + \
nnn[(i,kk)] + nnn[(i,ll)] + nnn[(i,mm)]
return np.ascontiguousarray(params)
最佳答案
这是使用 broadcasted
的矢量化方法总结-
# Gather the elements sorted by the keys in (row,col) order of a dense
# 2D array for both nn and nnn
sidx0 = np.ravel_multi_index(np.array(nn.keys()).T,(4,4)).argsort()
a0 = np.array(nn.values())[sidx0].reshape(4,4)
sidx1 = np.ravel_multi_index(np.array(nnn.keys()).T,(4,4)).argsort()
a1 = np.array(nnn.values())[sidx1].reshape(4,4)
# Perform the summations keep the first axis aligned for nn and nnn parts
parte0 = a0[:,:,None,None,None] + a0[:,None,:,None,None] + \
a0[:,None,None,:,None] + a0[:,None,None,None,:]
parte1 = a1[:,:,None,None,None] + a1[:,None,:,None,None] + \
a1[:,None,None,:,None] + a1[:,None,None,None,:]
# Finally add up sums from nn and nnn for final output
out = parte0[...,None,None,None,None] + parte1[:,None,None,None,None]
运行时测试
函数定义-
def vectorized_approach(nn,nnn):
sidx0 = np.ravel_multi_index(np.array(nn.keys()).T,(4,4)).argsort()
a0 = np.array(nn.values())[sidx0].reshape(4,4)
sidx1 = np.ravel_multi_index(np.array(nnn.keys()).T,(4,4)).argsort()
a1 = np.array(nnn.values())[sidx1].reshape(4,4)
parte0 = a0[:,:,None,None,None] + a0[:,None,:,None,None] + \
a0[:,None,None,:,None] + a0[:,None,None,None,:]
parte1 = a1[:,:,None,None,None] + a1[:,None,:,None,None] + \
a1[:,None,None,:,None] + a1[:,None,None,None,:]
return parte0[...,None,None,None,None] + parte1[:,None,None,None,None]
def original_approach(nn,nnn):
params = np.zeros([4, 4, 4, 4, 4, 4, 4, 4, 4])
for (i,j,k,l,m,jj,kk,ll,mm), val in np.ndenumerate(params):
params[i,j,k,l,m,jj,kk,ll,mm] = nn[(i,j)] + nn[(i,k)] + nn[(i,l)] + \
nn[(i,m)] + nnn[(i,jj)] + \
nnn[(i,kk)] + nnn[(i,ll)] + nnn[(i,mm)]
return params
设置输入-
# Setup inputs
x = np.random.rand(30)
nn = {(0,0): x[0], (1,1): x[1], (2,2): x[2], (3,3): x[3], (0,1): x[4],
(1,0): x[4], (0,2): x[5], (2,0): x[5], (0,3): x[6], (3,0): x[6],
(1,2): x[7], (2,1): x[7], (1,3): x[8], (3,1): x[8], (2,3): x[9],
(3,2): x[9]}
nnn = {(0,0): x[10], (1,1): x[11], (2,2): x[12], (3,3): x[13], (0,1): x[14],
(1,0): x[14], (0,2): x[15], (2,0): x[15], (0,3): x[16], (3,0): x[16],
(1,2): x[17], (2,1): x[17], (1,3): x[18], (3,1): x[18], (2,3): x[19],
(3,2): x[19]}
时间 -
In [98]: np.allclose(original_approach(nn,nnn),vectorized_approach(nn,nnn))
Out[98]: True
In [99]: %timeit original_approach(nn,nnn)
1 loops, best of 3: 884 ms per loop
In [100]: %timeit vectorized_approach(nn,nnn)
1000 loops, best of 3: 708 µs per loop
欢迎使用 1000x+
加速!
对于具有此类外部产品的通用数量的系统,这是一个遍历这些维度的通用解决方案 -
m,n = a0.shape # size of output array along each axis
N = 4 # Order of system
out = a0.copy()
for i in range(1,N):
out = out[...,None] + a0.reshape((m,)+(1,)*i+(n,))
for i in range(N):
out = out[...,None] + a1.reshape((m,)+(1,)*(i+n)+(n,))
关于python - 这个python函数可以向量化吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40006169/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!