- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我是 Tensorflow 的新手,正在尝试实现生成对抗网络。我正在关注 this同样的教程,我们正在尝试使用生成模型生成像图像这样的 MNIST 数据集。但是,该代码似乎使用的是旧版本的 TensorFlow (< 1.0),因此会出现以下错误:
line: trainerD = tf.train.AdamOptimizer().minimize(d_loss, var_list=d_vars)
ValueError: Variable d_wconv1/Adam/ does not exist, or was not createdwith tf.get_variable(). Did you mean to set reuse=None in VarScope?
其代码如下:
import tensorflow as tf
import random
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x_train = mnist.train.images[:55000,:]
#print (x_train.shape)
#randomNum = random.randint(0,55000)
#image = x_train[randomNum].reshape([28,28])
#plt.imshow(image, cmap=plt.get_cmap('gray_r'))
#plt.show()
def conv2d(x, W):
return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')
def avg_pool_2x2(x):
return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def discriminator(x_image, reuse=False):
if (reuse):
tf.get_variable_scope().reuse_variables()
#First Conv and Pool Layers
W_conv1 = tf.get_variable('d_wconv1', [5, 5, 1, 8], initializer=tf.truncated_normal_initializer(stddev=0.02))
b_conv1 = tf.get_variable('d_bconv1', [8], initializer=tf.constant_initializer(0))
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = avg_pool_2x2(h_conv1)
#Second Conv and Pool Layers
W_conv2 = tf.get_variable('d_wconv2', [5, 5, 8, 16], initializer=tf.truncated_normal_initializer(stddev=0.02))
b_conv2 = tf.get_variable('d_bconv2', [16], initializer=tf.constant_initializer(0))
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = avg_pool_2x2(h_conv2)
#First Fully Connected Layer
W_fc1 = tf.get_variable('d_wfc1', [7 * 7 * 16, 32], initializer=tf.truncated_normal_initializer(stddev=0.02))
b_fc1 = tf.get_variable('d_bfc1', [32], initializer=tf.constant_initializer(0))
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*16])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#Second Fully Connected Layer
W_fc2 = tf.get_variable('d_wfc2', [32, 1], initializer=tf.truncated_normal_initializer(stddev=0.02))
b_fc2 = tf.get_variable('d_bfc2', [1], initializer=tf.constant_initializer(0))
#Final Layer
y_conv=(tf.matmul(h_fc1, W_fc2) + b_fc2)
return y_conv
def generator(z, batch_size, z_dim, reuse=False):
if (reuse):
tf.get_variable_scope().reuse_variables()
g_dim = 64 #Number of filters of first layer of generator
c_dim = 1 #Color dimension of output (MNIST is grayscale, so c_dim = 1 for us)
s = 28 #Output size of the image
s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16) #We want to slowly upscale the image, so these values will help
#make that change gradual.
h0 = tf.reshape(z, [batch_size, s16+1, s16+1, 25])
h0 = tf.nn.relu(h0)
#Dimensions of h0 = batch_size x 2 x 2 x 25
#First DeConv Layer
output1_shape = [batch_size, s8, s8, g_dim*4]
W_conv1 = tf.get_variable('g_wconv1', [5, 5, output1_shape[-1], int(h0.get_shape()[-1])],
initializer=tf.truncated_normal_initializer(stddev=0.1))
b_conv1 = tf.get_variable('g_bconv1', [output1_shape[-1]], initializer=tf.constant_initializer(.1))
H_conv1 = tf.nn.conv2d_transpose(h0, W_conv1, output_shape=output1_shape, strides=[1, 2, 2, 1], padding='SAME')
H_conv1 = tf.contrib.layers.batch_norm(inputs = H_conv1, center=True, scale=True, is_training=True, scope="g_bn1")
H_conv1 = tf.nn.relu(H_conv1)
#Dimensions of H_conv1 = batch_size x 3 x 3 x 256
#Second DeConv Layer
output2_shape = [batch_size, s4 - 1, s4 - 1, g_dim*2]
W_conv2 = tf.get_variable('g_wconv2', [5, 5, output2_shape[-1], int(H_conv1.get_shape()[-1])],
initializer=tf.truncated_normal_initializer(stddev=0.1))
b_conv2 = tf.get_variable('g_bconv2', [output2_shape[-1]], initializer=tf.constant_initializer(.1))
H_conv2 = tf.nn.conv2d_transpose(H_conv1, W_conv2, output_shape=output2_shape, strides=[1, 2, 2, 1], padding='SAME')
H_conv2 = tf.contrib.layers.batch_norm(inputs = H_conv2, center=True, scale=True, is_training=True, scope="g_bn2")
H_conv2 = tf.nn.relu(H_conv2)
#Dimensions of H_conv2 = batch_size x 6 x 6 x 128
#Third DeConv Layer
output3_shape = [batch_size, s2 - 2, s2 - 2, g_dim*1]
W_conv3 = tf.get_variable('g_wconv3', [5, 5, output3_shape[-1], int(H_conv2.get_shape()[-1])],
initializer=tf.truncated_normal_initializer(stddev=0.1))
b_conv3 = tf.get_variable('g_bconv3', [output3_shape[-1]], initializer=tf.constant_initializer(.1))
H_conv3 = tf.nn.conv2d_transpose(H_conv2, W_conv3, output_shape=output3_shape, strides=[1, 2, 2, 1], padding='SAME')
H_conv3 = tf.contrib.layers.batch_norm(inputs = H_conv3, center=True, scale=True, is_training=True, scope="g_bn3")
H_conv3 = tf.nn.relu(H_conv3)
#Dimensions of H_conv3 = batch_size x 12 x 12 x 64
#Fourth DeConv Layer
output4_shape = [batch_size, s, s, c_dim]
W_conv4 = tf.get_variable('g_wconv4', [5, 5, output4_shape[-1], int(H_conv3.get_shape()[-1])],
initializer=tf.truncated_normal_initializer(stddev=0.1))
b_conv4 = tf.get_variable('g_bconv4', [output4_shape[-1]], initializer=tf.constant_initializer(.1))
H_conv4 = tf.nn.conv2d_transpose(H_conv3, W_conv4, output_shape=output4_shape, strides=[1, 2, 2, 1], padding='VALID')
H_conv4 = tf.nn.tanh(H_conv4)
#Dimensions of H_conv4 = batch_size x 28 x 28 x 1
return H_conv4
sess = tf.Session()
z_dimensions = 100
z_test_placeholder = tf.placeholder(tf.float32, [None, z_dimensions])
sample_image = generator(z_test_placeholder, 1, z_dimensions)
test_z = np.random.normal(-1, 1, [1,z_dimensions])
sess.run(tf.global_variables_initializer())
temp = (sess.run(sample_image, feed_dict={z_test_placeholder: test_z}))
my_i = temp.squeeze()
#plt.imshow(my_i, cmap='gray_r')
#plt.show()
batch_size = 16
tf.reset_default_graph() #Since we changed our batch size (from 1 to 16), we need to reset our Tensorflow graph
sess = tf.Session()
x_placeholder = tf.placeholder("float", shape = [None,28,28,1]) #Placeholder for input images to the discriminator
z_placeholder = tf.placeholder(tf.float32, [None, z_dimensions]) #Placeholder for input noise vectors to the generator
Dx = discriminator(x_placeholder) #Dx will hold discriminator prediction probabilities for the real MNIST images
Gz = generator(z_placeholder, batch_size, z_dimensions) #Gz holds the generated images
Dg = discriminator(Gz, reuse=True) #Dg will hold discriminator prediction probabilities for generated images
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg, labels=tf.ones_like(Dg)))
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dx, labels=tf.ones_like(Dx)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg, labels=tf.zeros_like(Dg)))
d_loss = d_loss_real + d_loss_fake
tvars = tf.trainable_variables()
d_vars = [var for var in tvars if 'd_' in var.name]
g_vars = [var for var in tvars if 'g_' in var.name]
trainerD = tf.train.AdamOptimizer().minimize(d_loss, var_list=d_vars)
trainerG = tf.train.AdamOptimizer().minimize(g_loss, var_list=g_vars)
sess.run(tf.global_variables_initializer())
iterations = 3000
for i in range(iterations):
z_batch = np.random.normal(-1, 1, size=[batch_size, z_dimensions])
real_image_batch = mnist.train.next_batch(batch_size)
real_image_batch = np.reshape(real_image_batch[0],[batch_size,28,28,1])
_,dLoss = sess.run([trainerD, d_loss],feed_dict={z_placeholder:z_batch,x_placeholder:real_image_batch}) #Update the discriminator
_,gLoss = sess.run([trainerG,g_loss],feed_dict={z_placeholder:z_batch}) #Update the generator
sample_image = generator(z_placeholder, 1, z_dimensions)
z_batch = np.random.normal(-1, 1, size=[1, z_dimensions])
temp = (sess.run(sample_image, feed_dict={z_placeholder: z_batch}))
my_i = temp.squeeze()
plt.imshow(my_i, cmap='gray_r')
plt.show()
它似乎有一个微不足道的解决方案,不幸的是我无法弄清楚。任何帮助将不胜感激。
最佳答案
请按以下方式修改您的代码,
使用 tf.variable_scope(tf.get_variable_scope(),reuse=False):
trainerD = tf.train.AdamOptimizer().minimize(d_loss, var_list=d_vars)
trainerG = tf.train.AdamOptimizer().minimize(g_loss, var_list=g_vars)
关于python - TensorFlow ValueError : Variable does not exist, 或不是用 tf.get_variable() 创建的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43183850/
我在 SQL 查询中使用了一个简单的 IF NOT EXISTS/WHERE NOT EXISTS 语句(我都尝试过),但我总是收到 mysql 错误,不知道为什么。尝试使用不同的引号,检查我的 My
我有 2 个表:tbl1 和 tbl2。我想从 tbl1 返回一行,其中包含以下列:col1、col2、col3、can_be_deleted 、有重要项目。这个想法是,can_be_deleted
如果您是 "t1".persona_1_id = 2,则预期结果应返回 persona_id = 4。 like --- id persona_1_id persona_2_id liked 1 2
我遇到了这个用于执行幂等插入的 github SQL 代码示例。完全按照我想要的方式工作。我不想使用 EXISTS,因为我觉得它有点困惑。可以使用联接对相同的操作进行编码吗? 下面是我在 github
public bool CheckTblExist(string TblName) { try { string cmTxt = "s
表1 Id Name DemoID 1 a 33 2 b 44 3 c 33 4 d 33 5 e 44 表2 Id DemoID IsT
我对 SQL 非常陌生。我想知道当我使用“IF EXISTS”或“IF NOT EXISTS”时会发生什么。例如:以下两个语句有什么区别: 语句 1:(存在) IF EXISTS( SELECT OR
我正在更新 exist-db 集合中的 XML 文件,我必须检查是否存在 id 以决定是否必须在我的文档中替换或插入某些内容。 我注意到随着文件的增长,查询执行时间显着恶化,我决定为我的文件添加一个索
我有一个正在尝试更新的数据库,但我不明白为什么会收到有关不存在的列的奇怪错误。当我使用“heroku pg:psql”访问数据库时,我完全可以看到该列。我找到了couple其他questions遇到类
我有一个这样的查询 SELECT ... FROM ... WHERE (SELECT EXISTS (SELECT...)) which did not return anything th
我有一个可以对数据库执行插入和更新的程序,我从 API 获取数据。这是我得到的示例数据: $uname = $get['userName']; $oname = $get['offerNa
我的批处理文件中有这个脚本 -- if not exist "%JAVA_HOME%" ( echo JAVA_HOME '%JAVA_HOME%' path doesn't exist) -
有没有办法让 Directory.Exists/File.Existssince 区分大小写 Directory.Exists(folderPath) 和 Directory.Exists(folde
考虑使用这两个表和以下查询: SELECT Product. * FROM Product WHERE EXISTS ( SELECT * FROM Codes
我正在使用 Subclipse 1.6.18 使用 Eclipse 3.72 (Indigo) 来处理 SVN 1.6 存储库。这一切都在 Ubuntu 下运行。 我有一个项目,在我更新我的 Ecli
我正在尝试使用 Terraform 配置 Azure 存储帐户和文件共享: resource "random_pet" "prefix" {} provider "azurerm" { versi
我有兴趣为需要使用 NOT EXISTS 的应用程序编写查询。子句来检查一行是否存在。 我正在使用 Sybase,但我想知道一般 SQL 中是否有一个示例,您可以在其中编写具有 NOT EXISTS
我正在尝试使用 Terraform 配置 Azure 存储帐户和文件共享: resource "random_pet" "prefix" {} provider "azurerm" { versi
下面是代码示例: CREATE TABLE #titles( title_id varchar(20), title varchar(80)
我曾经这样编写 EXISTS 检查: IF EXISTS (SELECT * FROM TABLE WHERE Columns=@Filters) BEGIN UPDATE TABLE SET
我是一名优秀的程序员,十分优秀!