gpt4 book ai didi

python - 从 pandas DataFrame 计算 RSI 指标?

转载 作者:太空狗 更新时间:2023-10-30 01:17:52 35 4
gpt4 key购买 nike

我的问题

我在 Github 上尝试了很多库,但它们都没有为 TradingView 生成匹配结果,所以我遵循了这个 link 上的公式计算 RSI 指标。我用 Excel 计算并用 TradingView 整理结果。我知道它绝对正确但是,我没有找到用Pandas计算它的方法。

公式

              100
RSI = 100 - --------
1 + RS

RS = Average Gain / Average Loss

The very first calculations for average gain and average loss are simple
14-period averages:

First Average Gain = Sum of Gains over the past 14 periods / 14.
First Average Loss = Sum of Losses over the past 14 periods / 14

The second, and subsequent, calculations are based on the prior averages
and the current gain loss:

Average Gain = [(previous Average Gain) x 13 + current Gain] / 14.
Average Loss = [(previous Average Loss) x 13 + current Loss] / 14.

预期结果

     close   change     gain     loss     avg_gian    avg_loss        rs  \
0 4724.89 NaN NaN NaN NaN NaN NaN
1 4378.51 -346.38 0.00 346.38 NaN NaN NaN
2 6463.00 2084.49 2084.49 0.00 NaN NaN NaN
3 9838.96 3375.96 3375.96 0.00 NaN NaN NaN
4 13716.36 3877.40 3877.40 0.00 NaN NaN NaN
5 10285.10 -3431.26 0.00 3431.26 NaN NaN NaN
6 10326.76 41.66 41.66 0.00 NaN NaN NaN
7 6923.91 -3402.85 0.00 3402.85 NaN NaN NaN
8 9246.01 2322.10 2322.10 0.00 NaN NaN NaN
9 7485.01 -1761.00 0.00 1761.00 NaN NaN NaN
10 6390.07 -1094.94 0.00 1094.94 NaN NaN NaN
11 7730.93 1340.86 1340.86 0.00 NaN NaN NaN
12 7011.21 -719.72 0.00 719.72 NaN NaN NaN
13 6626.57 -384.64 0.00 384.64 NaN NaN NaN
14 6371.93 -254.64 0.00 254.64 931.605000 813.959286 1.144535
15 4041.32 -2330.61 0.00 2330.61 865.061786 922.291480 0.937948
16 3702.90 -338.42 0.00 338.42 803.271658 880.586374 0.912201
17 3434.10 -268.80 0.00 268.80 745.895111 836.887347 0.891273
18 3813.69 379.59 379.59 0.00 719.730460 777.109680 0.926163
19 4103.95 290.26 290.26 0.00 689.053999 721.601845 0.954895
20 5320.81 1216.86 1216.86 0.00 726.754428 670.058856 1.084613
21 8555.00 3234.19 3234.19 0.00 905.856968 622.197509 1.455899
22 10854.10 2299.10 2299.10 0.00 1005.374328 577.754830 1.740140

rsi_14
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 NaN
9 NaN
10 NaN
11 NaN
12 NaN
13 NaN
14 53.369848
15 48.399038
16 47.704239
17 47.125561
18 48.083322
19 48.846358
20 52.029461
21 59.281719
22 63.505515

我的代码

导入

import pandas as pd
import numpy as np

加载数据

df = pd.read_csv("rsi_14_test_data.csv")
close = df['close']
print(close)

0 4724.89
1 4378.51
2 6463.00
3 9838.96
4 13716.36
5 10285.10
6 10326.76
7 6923.91
8 9246.01
9 7485.01
10 6390.07
11 7730.93
12 7011.21
13 6626.57
14 6371.93
15 4041.32
16 3702.90
17 3434.10
18 3813.69
19 4103.95
20 5320.81
21 8555.00
22 10854.10
Name: close, dtype: float64

改变

计算每一行的变化

change = close.diff(1)
print(change)

0 NaN
1 -346.38
2 2084.49
3 3375.96
4 3877.40
5 -3431.26
6 41.66
7 -3402.85
8 2322.10
9 -1761.00
10 -1094.94
11 1340.86
12 -719.72
13 -384.64
14 -254.64
15 -2330.61
16 -338.42
17 -268.80
18 379.59
19 290.26
20 1216.86
21 3234.19
22 2299.10
Name: close, dtype: float64

得与失

从变化中得到得失

is_gain, is_loss = change > 0, change < 0
gain, loss = change, -change
gain[is_loss] = 0
loss[is_gain] = 0

gain.name = 'gain'
loss.name = 'loss'
print(loss)

0 NaN
1 346.38
2 0.00
3 0.00
4 0.00
5 3431.26
6 0.00
7 3402.85
8 0.00
9 1761.00
10 1094.94
11 0.00
12 719.72
13 384.64
14 254.64
15 2330.61
16 338.42
17 268.80
18 0.00
19 0.00
20 0.00
21 0.00
22 0.00
Name: loss, dtype: float64

计算拳头平均 yield 和损失

前 n 行的平均值

n = 14
avg_gain = change * np.nan
avg_loss = change * np.nan

avg_gain[n] = gain[:n+1].mean()
avg_loss[n] = loss[:n+1].mean()

avg_gain.name = 'avg_gain'
avg_loss.name = 'avg_loss'

avg_df = pd.concat([gain, loss, avg_gain, avg_loss], axis=1)
print(avg_df)

gain loss avg_gain avg_loss
0 NaN NaN NaN NaN
1 0.00 346.38 NaN NaN
2 2084.49 0.00 NaN NaN
3 3375.96 0.00 NaN NaN
4 3877.40 0.00 NaN NaN
5 0.00 3431.26 NaN NaN
6 41.66 0.00 NaN NaN
7 0.00 3402.85 NaN NaN
8 2322.10 0.00 NaN NaN
9 0.00 1761.00 NaN NaN
10 0.00 1094.94 NaN NaN
11 1340.86 0.00 NaN NaN
12 0.00 719.72 NaN NaN
13 0.00 384.64 NaN NaN
14 0.00 254.64 931.605 813.959286
15 0.00 2330.61 NaN NaN
16 0.00 338.42 NaN NaN
17 0.00 268.80 NaN NaN
18 379.59 0.00 NaN NaN
19 290.26 0.00 NaN NaN
20 1216.86 0.00 NaN NaN
21 3234.19 0.00 NaN NaN
22 2299.10 0.00 NaN NaN

平均 yield 和平均损失的第一次计算还可以,但我不知道如何为第二次和后续应用 pandas.core.window.Rolling.apply,因为它们在很多行和不同的列中。它可能是这样的:

avg_gain[n] = (avg_gain[n-1]*13 + gain[n]) / 14

我的愿望-我的问题

  • 计算和使用技术指标的最佳方式?
  • 在“Pandas Style”中完成上述代码。
  • 与 Pandas 相比,传统的循环编码方式是否会降低性能?

最佳答案

平均 yield 和损失是通过递归公式计算的,不能用 numpy 向量化。但是,我们可以尝试找到一个分析(即非递归)解决方案来计算各个元素。然后可以使用 numpy 实现这样的解决方案。

将平均增益表示为 y,将当前增益表示为 x,我们得到 y[i] = a*y[i-1] + b *x[i],其中 a = 13/14b = 1/14 对于 n = 14。展开递归导致: enter image description here(对不起,图片不好,打字太麻烦了)

这可以使用 cumsum(rma = 运行移动平均线)在 numpy 中有效计算:

import pandas as pd
import numpy as np

df = pd.DataFrame({'close':[4724.89, 4378.51,6463.00,9838.96,13716.36,10285.10,
10326.76,6923.91,9246.01,7485.01,6390.07,7730.93,
7011.21,6626.57,6371.93,4041.32,3702.90,3434.10,
3813.69,4103.95,5320.81,8555.00,10854.10]})
n = 14


def rma(x, n, y0):
a = (n-1) / n
ak = a**np.arange(len(x)-1, -1, -1)
return np.r_[np.full(n, np.nan), y0, np.cumsum(ak * x) / ak / n + y0 * a**np.arange(1, len(x)+1)]

df['change'] = df['close'].diff()
df['gain'] = df.change.mask(df.change < 0, 0.0)
df['loss'] = -df.change.mask(df.change > 0, -0.0)
df['avg_gain'] = rma(df.gain[n+1:].to_numpy(), n, np.nansum(df.gain.to_numpy()[:n+1])/n)
df['avg_loss'] = rma(df.loss[n+1:].to_numpy(), n, np.nansum(df.loss.to_numpy()[:n+1])/n)
df['rs'] = df.avg_gain / df.avg_loss
df['rsi_14'] = 100 - (100 / (1 + df.rs))

df.round(2) 的输出:

         close   change     gain     loss  avg_gain  avg_loss    rs    rsi  rsi_14
0 4724.89 NaN NaN NaN NaN NaN NaN NaN NaN
1 4378.51 -346.38 0.00 346.38 NaN NaN NaN NaN NaN
2 6463.00 2084.49 2084.49 0.00 NaN NaN NaN NaN NaN
3 9838.96 3375.96 3375.96 0.00 NaN NaN NaN NaN NaN
4 13716.36 3877.40 3877.40 0.00 NaN NaN NaN NaN NaN
5 10285.10 -3431.26 0.00 3431.26 NaN NaN NaN NaN NaN
6 10326.76 41.66 41.66 0.00 NaN NaN NaN NaN NaN
7 6923.91 -3402.85 0.00 3402.85 NaN NaN NaN NaN NaN
8 9246.01 2322.10 2322.10 0.00 NaN NaN NaN NaN NaN
9 7485.01 -1761.00 0.00 1761.00 NaN NaN NaN NaN NaN
10 6390.07 -1094.94 0.00 1094.94 NaN NaN NaN NaN NaN
11 7730.93 1340.86 1340.86 0.00 NaN NaN NaN NaN NaN
12 7011.21 -719.72 0.00 719.72 NaN NaN NaN NaN NaN
13 6626.57 -384.64 0.00 384.64 NaN NaN NaN NaN NaN
14 6371.93 -254.64 0.00 254.64 931.61 813.96 1.14 53.37 53.37
15 4041.32 -2330.61 0.00 2330.61 865.06 922.29 0.94 48.40 48.40
16 3702.90 -338.42 0.00 338.42 803.27 880.59 0.91 47.70 47.70
17 3434.10 -268.80 0.00 268.80 745.90 836.89 0.89 47.13 47.13
18 3813.69 379.59 379.59 0.00 719.73 777.11 0.93 48.08 48.08
19 4103.95 290.26 290.26 0.00 689.05 721.60 0.95 48.85 48.85
20 5320.81 1216.86 1216.86 0.00 726.75 670.06 1.08 52.03 52.03
21 8555.00 3234.19 3234.19 0.00 905.86 622.20 1.46 59.28 59.28
22 10854.10 2299.10 2299.10 0.00 1005.37 577.75 1.74 63.51 63.51


关于你关于性能的最后一个问题:python/pandas 中的显式循环很糟糕,尽可能避免它们。如果不行,试试cython or numba .

为了说明这一点,我将我的 numpy 解决方案与 dimitris_ps 的 loop solution 做了一个小的比较。 :

import pandas as pd
import numpy as np
import timeit

mult = 1 # length of dataframe = 23 * mult
number = 1000 # number of loop for timeit

df0 = pd.DataFrame({'close':[4724.89, 4378.51,6463.00,9838.96,13716.36,10285.10,
10326.76,6923.91,9246.01,7485.01,6390.07,7730.93,
7011.21,6626.57,6371.93,4041.32,3702.90,3434.10,
3813.69,4103.95,5320.81,8555.00,10854.10] * mult })
n = 14

def rsi_np():
# my numpy solution from above
return df

def rsi_loop():
# loop solution https://stackoverflow.com/a/57008625/3944322
# without the wrong alternative calculation of df['avg_gain'][14]
return df

df = df0.copy()
time_np = timeit.timeit('rsi_np()', globals=globals(), number = number) / 1000 * number

df = df0.copy()
time_loop = timeit.timeit('rsi_loop()', globals=globals(), number = number) / 1000 * number

print(f'rows\tnp\tloop\n{len(df0)}\t{time_np:.1f}\t{time_loop:.1f}')

assert np.allclose(rsi_np(), rsi_loop(), equal_nan=True)

结果(毫秒/循环):

rows    np    loop
23 4.9 9.2
230 5.0 112.3
2300 5.5 1122.7

因此,即使对于 8 行(第 15...22 行),循环解决方案的时间也是 numpy 解决方案的两倍。 Numpy 的扩展性很好,而循环解决方案不适用于大型数据集。

关于python - 从 pandas DataFrame 计算 RSI 指标?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57006437/

35 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com