gpt4 book ai didi

python - 使用 ARMA 的统计模型

转载 作者:太空狗 更新时间:2023-10-30 01:16:11 24 4
gpt4 key购买 nike

这里有点新,但试图让 statsmodel ARMA 预测工具起作用。我从 Yahoo 导入了一些股票数据,并让 ARMA 给我拟合参数。然而,当我使用预测代码时,我收到的只是一个我似乎无法弄清楚的错误列表。不太确定我在这里做错了什么:

import pandas
import statsmodels.tsa.api as tsa
from pandas.io.data import DataReader

start = pandas.datetime(2013,1,1)
end = pandas.datetime.today()

data = DataReader('GOOG','yahoo')
arma =tsa.ARMA(data['Close'], order =(2,2))
results= arma.fit()
results.predict(start=start,end=end)

错误是:

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
C:\Windows\system32\<ipython-input-84-25a9b6bc631d> in <module>()
13 results= arma.fit()
14 results.summary()
---> 15 results.predict(start=start,end=end)

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\base\wrapp
er.pyc in wrapper(self, *args, **kwargs)
88 results = object.__getattribute__(self, '_results')
89 data = results.model.data
---> 90 return data.wrap_output(func(results, *args, **kwargs), how)
91
92 argspec = inspect.getargspec(func)

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in predict(self, start, end, exog, dynamic)
1265
1266 """
-> 1267 return self.model.predict(self.params, start, end, exog, dynamic
)
1268
1269 def forecast(self, steps=1, exog=None, alpha=.05):

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in predict(self, params, start, end, exog, dynamic)
497
498 # will return an index of a date

--> 499 start = self._get_predict_start(start, dynamic)
500 end, out_of_sample = self._get_predict_end(end, dynamic)
501 if out_of_sample and (exog is None and self.k_exog > 0):

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in _get_predict_start(self, start, dynamic)
404 #elif 'mle' not in method or dynamic: # should be on a date

405 start = _validate(start, k_ar, k_diff, self.data.dates,
--> 406 method)
407 start = super(ARMA, self)._get_predict_start(start)
408 _check_arima_start(start, k_ar, k_diff, method, dynamic)

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\arima_
model.pyc in _validate(start, k_ar, k_diff, dates, method)
160 if isinstance(start, (basestring, datetime)):
161 start_date = start
--> 162 start = _index_date(start, dates)
163 start -= k_diff
164 if 'mle' not in method and start < k_ar - k_diff:

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\base\d
atetools.pyc in _index_date(date, dates)
37 freq = _infer_freq(dates)
38 # we can start prediction at the end of endog

---> 39 if _idx_from_dates(dates[-1], date, freq) == 1:
40 return len(dates)
41

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\base\d
atetools.pyc in _idx_from_dates(d1, d2, freq)
70 from pandas import DatetimeIndex
71 return len(DatetimeIndex(start=d1, end=d2,
---> 72 freq = _freq_to_pandas[freq])) - 1
73 except ImportError, err:
74 from pandas import DateRange

D:\Python27\lib\site-packages\statsmodels-0.5.0-py2.7.egg\statsmodels\tsa\base\d
atetools.pyc in __getitem__(self, key)
11 # being lazy, don't want to replace dictionary below

12 def __getitem__(self, key):
---> 13 return get_offset(key)
14 _freq_to_pandas = _freq_to_pandas_class()
15 except ImportError, err:

D:\Python27\lib\site-packages\pandas\tseries\frequencies.pyc in get_offset(name)

484 """
485 if name not in _dont_uppercase:
--> 486 name = name.upper()
487
488 if name in _rule_aliases:

AttributeError: 'NoneType' object has no attribute 'upper'

最佳答案

在我看来像是一个错误。我会调查一下。

https://github.com/statsmodels/statsmodels/issues/712

编辑:作为解决方法,您可以从 DataFrame 中删除 DatetimeIndex 并将其传递给 numpy 数组。它使预测在日期方面变得有点棘手,但在没有频率的情况下使用日期进行预测已经非常棘手,因此仅具有开始日期和结束日期基本上没有意义。

import pandas
import statsmodels.tsa.api as tsa
from pandas.io.data import DataReader
import pandas

data = DataReader('GOOG','yahoo')
dates = data.index

# start at a date on the index
start = dates.get_loc(pandas.datetools.parse("1-2-2013"))
end = start + 30 # "steps"

# NOTE THE .values
arma =tsa.ARMA(data['Close'].values, order =(2,2))
results= arma.fit()
results.predict(start, end)

关于python - 使用 ARMA 的统计模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15515019/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com